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Foreword 
Affymetrix is dedicated to helping you design and analyze GeneChip® expression profiling 
experiments that generate high-quality, statistically sound, and biologically interesting results. 
This guide provides information, resources, and tools to help you easily design and analyze 
experiments and maximize the value derived from your GeneChip data.  

There is a diverse range of experimental objectives and uses for GeneChip microarray data, 
which makes the areas of experimental design and data analysis quite broad in scope. As 
such, there are many ways to design expression profiling experiments, as well as many ways 
to analyze and mine data. This guide focuses on experimental design elements, statistical 
tests, and biological interpretation relevant to functional genomics expression profiling 
experiments, including transcriptional analysis of normal biological processes, discovery and 
validation of drug targets, and studies into the mechanism of action and toxicity of 
pharmaceutical compounds. 
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Chapter 1  Overview of Experimental Design Strategy 
The best designed microarray experiments begin with well-defined goals, anticipated 
technical pitfalls, and minimized cost. This design phase is critical, as overlooking these key 
elements can result in highly variable or un-interpretable data.  

The initial task is to define the objectives of the experiment. Each experimental design 
should optimize the chances of answering a key hypothesis. There is a natural temptation to 
test all of the interesting questions in a single experiment, but this approach is dangerous, as 
overly complex experiments may be un-testable, meaning that the data from these 
experiments are not statistically powerful enough to answer all questions. In practice this is 
the direct result of too few replicates or too little experimental control. 

It is recommended that initial experiments focus on a thorough test of a single key 
hypothesis which will minimize the arrays required and simplify your data analysis. Testing 
of more complex hypotheses is best postponed for follow up studies. This serial approach 
minimizes cost, maximizes statistical power, and simplifies biological interpretation. For 
example, in a study of the toxic effect of a drug in mice, the critical variable is dose. It may 
seem desirable to maximize the number of doses, minimize the number of time points, and 
maintain a single controlled rodent diet. However, the temptation to test many time points 
or a new diet at the same time may undermine the ability to statistically test the dose 
response.  

Ideally, one would want replication to be maximized. True statistical replication means that 
all test variables are changed independently, one at a time. To achieve this for each new 
variable added to a design, the required number of arrays is multiplied. For example, to 
replicate five doses, a minimum of three arrays is needed to replicate each dose, or a total of 
fifteen arrays. If two time points are tested to represent acute and chronic reactions, thirty 
arrays are needed to have the same statistical power. If diet is added, sixty arrays are needed. 
However, if dose and time are tested first, then the maximum effective non-toxic dose and 
the critical time point can be determined. Then a retesting of diet is done just at that one 
dose and one time point. If a control dose and a single dose is used at three replicates each, 
and two diets are tested, only twelve arrays are required. Totaling two serial experiments, 
forty-two arrays are used instead of sixty to query the dose, time, and diet parameters. 
Evidently, interactions between these variables are not tested by serial experiments, but in 
general, interactions are less important than main effects. Thus, using the information from 
an earlier study to refine a further test is a practical way to avoid costly and complex 
experiments that may be difficult to execute. 

Pilot microarray studies are also recommended for practical reasons. If there are any 
unforeseen difficulties in the acquisition of biological sample, the assay, or the data analysis, 
a pilot study will often find them. Refining methods after a small scale study is far cheaper 
and more effective than complex mathematical fixes well after the fact. Pilot studies provide 
a safety net if there are problems and, if there are no issues, the few early answers can be 
incorporated into the complete experiment. Generally, pilot studies are limited designs that 
focus on a single variable versus a control state. Pilot studies also provide a good estimate of 
the variance of gene expression, which is useful in determining how many replicates the 
experiment’s key questions will require. 
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If the researcher’s experience with statistics is not extensive, then enlisting the help of a 
statistician or consulting a good textbook on statistics is strongly recommended either before 
the pilot study or just after. After the pilot study, a statistician may help calculate the 
statistical power of the experimental design, as well as determine the analytical approach and 
any software that may be required. Applying statistics in these planning stages can make the 
entire process easier and help avoid common pitfalls. 

In the following sections, some of the sources of technical variability are detailed and 
suggestions are provided for minimizing it. In addition, statistical methods often used for 
microarray analysis are discussed. While other valid methods have been applied to GeneChip 
microarray data, suggestions herein use simple, commonly available, statistical methods that 
can be found in popular software packages, such as STATA® or SASS®. 

Mitigating Technical and Biological Variance 
Before speculating about sources of biological variability, other non-biological sources of 
variability must be identified and mitigated. In the GeneChip experimental process, the 
sources of variability in descending order are: biological, sample preparation (total RNA 
isolation as well as labeling), and system (instruments and arrays). Of these, the system noise 
is negligible and does not need to be addressed. As a result of the standardization of the 
hybridization, washing, staining, and scanning, as well as the quality controls built into 
manufacturing processes (14), system noise is not a significant source of technical variation. 
However, without careful technique and planning, sample preparation can be a large, 
unexpected, and unnecessary source of variation. 

Obviously, all equipment used in the process should be calibrated regularly to ensure 
accuracy. Once the equipment calibration is validated, the next consideration in controlling 
variability in sample preparation is the isolation of total RNA. This is an important step 
when preparing microarray experiments and care should be used during experimental 
planning to ensure that the RNA is of high quality and consistently suitable for labeling and 
array hybridization. Standard protocols are given in the GeneChip® Expression Analysis 
Technical Manual (1), though modifications to this protocol may need to be made for some 
tissues that are difficult to collect or have high quantities of potential contaminants.  

All RNA samples should meet assay quality standards to ensure the highest quality RNA is 
hybridized to the gene expression arrays. Researchers should run the initial total RNA on an 
agarose gel and examine the ribosomal RNA bands. Non-distinct ribosomal RNA bands 
indicate degradation which can lead to poor dsDNA synthesis and cRNA yield. 

A 260/280 absorbance reading should be obtained for both total RNA and biotinylated 
cRNA. Acceptable A260/280 ratios fall in the range of 1.8 to 2.1. Ratios below 1.8 indicate 
possible protein contamination. Ratios above 2.1 indicate presence of degraded RNA, 
truncated cRNA transcripts, and/or excess free nucleotides. 
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Sample Quality Assessment Following Total RNA Isolation 

Action Expected Results Comments 

Electrophorese sample 
through an agarose gel. 

 

Distinct ribosomal 
RNA bands. 

Non-distinct ribosomal RNA bands 
indicate degradation, which will lead 
to poor dsDNA synthesis and 
labeling. 

Measure 260/280 
absorbance for total 
RNA and biotinylated 
cRNA. 

Ratios between 1.8 and 
2.1 in TE Buffer.  
Ratios between 1.6 and 
1.9 in H2O. 

Ratios below 1.6 indicate possible 
protein contamination. 

Ratios above 2.1 indicate presence of 
degraded RNA, truncated cRNA 
transcripts, and/or excess free 
nucleotides. 

 

The quality of total RNA can also be measured by the Bioanalyzer.  A good quality sample 
should have 18S and 28S peaks that look like the image in Figure 1.  The graph should have 
a low baseline and sharp ribosomal peaks.  A degraded sample of RNA will look similar to 
the image in Figure 2.  A good quality sample will typically have a ratio of 28S:18S ribosomal 
peaks of 2:1, however, this can be sample dependent. 

 

 
 

Figure 1. Good RNA sample quality measured with the Bioanalyzer. 
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Figure 2. Degraded RNA sample quality measured with the Bioanalyzer. 

Reduction in process variability is the next step to minimize variability in microarray results. 
A measurable source of potential variability in the labeling process is operator-to-operator 
differences. It is important to emphasize that care must be taken in the reverse transcription 
and labeling protocols to ensure consistency throughout the entire process. Common 
practices used to minimize such variability include processing all RNAs on the same day, 
using reagents from the same lots, preparing reagent master mixes, and having a single 
scientist responsible for all the bench manipulations.  However, this is often not practical, as 
some experiments can be quite large and occur over an extended period of time. Thus, it is 
important to measure and then mitigate variations in the labeling process, both within and 
between the bench scientists.  Such validation typically leads to the development of standard 
operating procedures followed by every scientist involved in a project such that each step in 
the process is clear and well defined. 

This process validation can begin by following the sample from the isolation of the total 
RNA to the actual fragmentation of transcript following IVT. The use of gel electrophoresis 
will aid in following the sample from step to step in the assay and hybridization protocol. 
Gel electrophoresis can be performed after cDNA synthesis (if using poly-A mRNA as 
starting material), after cRNA synthesis, and after fragmentation. This will be helpful in 
estimating quantity and size distribution of the labeled sample. During this phase of technical 
evaluation, cRNA yield from a standard total RNA sample is another simple and effective 
method to assess consistency. 

A sensitive method to assess the total process variability is to examine the correlation or 
concordance between data derived from standard total RNA samples, both within and 
between technicians. The most abundant and sensitive data point is the Signal derived from 
a GeneChip array. Two identical total RNA samples are labeled separately and hybridized to 
two arrays and the data are compared. The correlation coefficient (r) should be very high 
(>0.95), and the false change in Comparison Analysis between the two labeling reactions 
(I/D > 1 Signal Log Ratio) should be less than 1% or 2%, depending on the array used. In 
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addition, the change in detection from Present (P) to Absent (A) calls for the same genes 
should be approximately 10% or less overall. These metrics should also hold true when 
comparing data generated by the same or different technicians. 

If the technician is not able to achieve these conditions, then potential sources of variability 
should be investigated. As stated above, calibration of all equipment should be done on a 
regular basis. In addition, seemingly subtle events may make a difference. For example, 
reaction times should be standardized within the recommended time window, pipetting 
techniques should be investigated to ensure consistency, etc. Following validation of the 
bench scientists’ techniques for labeling and hybridizing samples, the remainder of the 
variability (equipment and array) should be a negligible portion of the total variability of the 
system. 

Ultimately, variability in the final data is the important issue. Signal values are designed to be 
robust against noise. Before throwing out data or attempting a complex correction, check 
the effect on Signal. Strong biological effects can be reliably measured even in the presence 
of technical noise. If quality metrics and Signal data both indicate that a given array is 
unacceptable, the recommendation is to remove the data rather than attempt a mathematical 
repair. Most corrective measures are based on a theory of error, whether explicitly stated or 
implied. Unless the investigator is sure that the theory is a good model of reality, introducing 
the corrective measures may accidentally create a new class of false positives. 

Every biological level of organization results in variation in gene expression so that, as a rule, 
biological variation will exceed technical variation in a well-controlled process (2). Unlike 
technical variation, these key variables are system dependent and may be more difficult to 
control, or may even be uncontrollable. Fortunately there are methods for handling variance, 
whether controllable or not. 

Controlling as many variables as possible is the best option. For example, when working 
with a mouse model, the same gender is used, the same light/dark cycle is used, the animal is 
sacrificed at the same time and in the same way. What is not as obvious as these examples 
are seemingly innocuous changes in conditions that microarrays often detect. For example, 
Arabidopsis is so touch sensitive that simply spraying water on leaves triggers a suite of 
specialized genes (3). Heat shock, hypoxia, pH stress, and nutrient deficiencies are all 
examples of effects that induce gene transcription and can occur in whole animal, plant, and 
cell culture studies. 

If similar variables are not normally controlled in an investigator’s system when measuring 
large-scale phenotypes, the investigator may be unwittingly introducing problems of 
interpretation in the data set. Once again the pilot study is very helpful in this situation. 
Looking only at control arrays, ranking of genes by variance at every quartile of intensity can 
be done. That is, the lowest 25% of Signals is ranked, and then the next 25% is checked, and 
so on. By entering the top 100 Probe Set IDs into the Gene Ontology Analysis Tool in the 
NetAffx™ Analysis Center one can quickly see if a particular process is indicated. (Please 
refer to the “Biological Interpretation of GeneChip® Expression Data” section of this 
document for further explanation.) If this process is controllable, then the pilot study has 
been successful. 

It is known that there are many factors that can not be controlled and some factors which 
are suspected to influence results. Controlling every possible biological factor is simply 
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impossible and, in studies such as human cancer, the sampling is unplanned. Fortunately, 
statistics offer workable solutions for many of these problems.  

If a factor cannot be controlled, then randomize it. As long as replication is sufficient, 
random selection will dampen the factor’s influence on the data. If level of control to that 
extent is not available, then the data can be stratified and each stratum weighted in the final 
analysis.  

An appropriate example would be that of a liver cancer study with samples from several 
ethnic populations. Using the samples, the investigator intends to make a statement about 
the entire U.S. population. To do so, the samples can be split by ethnicity, and weighted by 
their frequency in the general population. As long as there is sufficient replication for each 
ethnicity, the weighted sample will be representative. For randomizing and representational 
weighting techniques, it is recommended to enlist the help of a statistician or a statistics 
textbook prior to beginning a full-scale experiment. 

Determination of Arrays per Sample Type 
One objective of a pilot study is to determine the optimal number of arrays to include in an 
experimental design. If this was a single measurement assay and a simple treatment vs. 
control test, then finding the critical number of arrays would be easy. Under the assumption 
of normality (please refer to the “Statistical Analysis” section of this document for further 
explanation) there is a standard formula based on the t-statistic. However microarrays are 
anything but simple, statistically speaking. Rather than a single measurement, there are 
thousands of measurements. Each of these thousands of genes has a different standard 
deviation (the normal or parametric method of estimating variance). This is why no simple 
answer exists to the question: how many arrays are needed for a study?  

Finding the appropriate number depends on at least two considerations: the variability of the 
system being investigated and the minimum significant change proposed for measurement 
(the effect size). Significant change is the difference between means relative to the noise in 
the system, with the t-test being the most familiar example of a measure of effect size. 
However, since each gene on a microarray has a different variance no simple answer to the 
ideal array number is possible. Rather, each experimenter must select a threshold of 
significance. Ideally, data from a pilot study will help select the proper threshold, where 
known gene expression changes are declared significant. For planning purposes, the 
appropriate number of arrays is at least three and may go up to five arrays. However, the 
actual optimal number may vary depending on the study’s samples and variance inherent in 
the experimental system. 

For some systems, there is so much inherent variability that only a large number of arrays 
will allow production of statistically significant results. For example, human neural tissues 
often have a high level of sample-to-sample variability due to a high level of patient 
variability. This is the difficulty of sample collection in the operating room and the inherent 
sample preparation difficulties due to the high concentration of lipids. By contrast, data from 
cultured cells should have less variation due to the ability to tightly control the 
environmental conditions. 
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In addition, the optimal number of samples per condition may vary with the experimental 
condition. In an experiment investigating induced myocardial infarction, it was found that 
variation was increased in the experimental animals when compared with the control rats (4). 

A simple method to determine the optimal number of samples per condition is to examine 
the coefficient of variation (CV) as a percentage of the mean value for each gene. This can 
be done on a continuum as depicted in the Affymetrix Technical Note on small sample 
preparation (5) or by sampling a number of data points from each quartile in the data (easily 
done in Microsoft Excel®). When this value is stabilized, that is, does not change from one 
biological replicate to the next, then it is unlikely that additional replicates will improve the 
accuracy of the samples’ standard deviations, which are ultimately used to determine 
statistical significance in parametric statistical tests. In the example experiment summarized 
in Figure 3, there appears to be no significant improvement in CV between the third and 
fourth replicate array, which indicates a sufficient number of replicate experiments have 
been performed. Use of this strategy will result in n+1 number of optimal replicates, but this 
will serve to increase the degrees of freedom, thus increasing the power of statistical tests. If 
a fixed number of arrays is chosen before assessing the variance of the system, statistical 
estimates of variance may not be accurate due to insufficient sample size, which will decrease 
the accuracy of subsequent statistical tests. 

 

 
Figure 3. Comparison of CV%s between replicates of the 25th percentile of 

Signal intensities.  
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Figure 4. Comparison of CV%s between replicates of the 50th percentile of 

Signal intensities.   
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Figure 5. Comparison of CV%s between replicates of the 75th percentile of 

Signal intensities.   

If you choose a fixed number of arrays instead of assessing the variance of the system, keep 
in mind that the statistical estimates of variance may not be accurate due to the insufficient 
sample size, which will thus decrease the accuracy of subsequent statistical tests.  

Sample Pooling 
At times, due to limited sample quantities, pooling of total RNA samples is necessary. It 
should be noted that protocols are available for labeling as little as 10 ng of sample (5). 
Pooling is also a common variance mitigation strategy, which, for reasons explained in this 
guide, is not recommended for microarrays. While pooling can be an effective way to 
overcome limitations in sample quantity and reduce variance, there are consequences that 
should be considered. 

First, pooling results in irreversible loss of information. Once RNA samples are mixed there 
is no way to identify whether any one sample was a biological outlier. Microarrays are not 
extremely sensitive but measure a wide range of genes.  Therefore, it is reasonable to expect 
that each sample may have an outlying measurement for at least a few genes. Those outlier 
genes may indicate a control variable which needs adjusting. Pooling averages across those 
outliers, so that information about system variability is lost. In addition, subsequent 
investigation of sample-specific attributes, such as the development of cancer in a defined 
age group or population, is irretrievable from a data set generated from pooled samples. 
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Pooling introduces a bias in microarray experiments. That is, physical mixing produces a 
Signal that is like the arithmetic mean of the samples. Gene expression data are best 
measured over several orders of magnitude, and the noise around a large Signal is greater 
than the noise around a small one. This means that outlier measurements are common. Since 
a simple average is sensitive to outliers, results from pooling will likewise be sensitive to 
outliers. This sensitivity is a bias because it is one sided. That is, high Signals add more noise 
than low Signals so the pooled signal will be biased high. 

Finally, errors can be introduced when creating pools. If a researcher has clear cut class 
definitions, such as that seen in drug treatment studies, constructing several pools may be 
done safely. However, pooling is risky in studies where a classification scheme has yet to be 
elucidated or is often erroneous.  The latter is a common problem with tumor identification.  
Keeping individual cancer samples separate allows a researcher to define new classifiers, 
which have been shown to be more subtle discriminators than histological methods as 
demonstrated in numerous microarray studies (6). 

Even if classification is perfect, bias is minimal and no outliers exist; pools are not 
substitutes for replication. In the extreme example, where only a single pool exists for each 
treatment, pooling is especially problematic. The loss of variance measures ensures that 
genes are selected on the basis of changes in magnitude rather than the consistency or 
reliability of that change. In addition, the researcher misses those small magnitude changes 
that are reliable and may be biologically important. 

Despite these significant concerns, pooling may be useful if applied carefully. If the amount 
of RNA from individual samples is very limited and pooling cannot be avoided, a researcher 
can benefit from statistical tests by using at least three pools for every condition being 
studied. For example, 30 mice are treated and three RNA pools derived from the samples 
from 10 mice each are created. In this way the individual idiosyncrasies of the mice are 
mitigated and replication is preserved. Thus, careful experimental design can alleviate some 
of the disadvantages of pooling. If a researcher can accept the irreversible loss of 
information, and the decrease in variance between pools is sufficient to separate two 
previously inseparable classes, then the experiment may warrant the risks of pooling. 
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Chapter 2  Types of Experimental Designs 
As discussed previously, the first determination that must be made when creating an 
experimental design is how many biological replicates need to be run to produce meaningful 
data. The use of pilot experiments may help to determine the number of arrays potentially 
required for the study and may also assess whether or not biological variables are being 
controlled sufficiently. In addition, when planning a time-course experiment, ideal times for 
array hybridizations can be selected in a similar manner. 

The simplest pilot experimental design is to test only one variable with a single treatment or 
condition against a control. Initially, the data can be collected for a small number of genes 
(five or more) using a quantitative PCR method. The genes selected should be those that are 
known to change or strongly suspected to change; and if possible, the anticipated range of 
expression levels is known. Thus the anticipated variance of the system can be assessed and 
optimal time points for the large-scale expression experiments using GeneChip® arrays can 
be chosen. This also provides the opportunity to refine the experimental design if necessary, 
prior to beginning pilot experiments with the arrays or a full-scale experiment. 

Planning for data analysis is part of the experimental design.  Ideally, microarrays should be 
treated as any other multiple endpoint analysis experiment:  the biological hypothesis tested 
should be carefully noted as part of the prospective experimental design, the endpoints of 
the analysis should be specified with care; the power of the experimental design chosen 
should be prospectively identified, as should the analysis methods to be used.   

Another important consideration is which statistical test will be used to analyze the data. The 
size and complexity of an experimental design will determine whether to use two-sample or 
multi-sample tests or whether parametric or non-parametric tests are most appropriate. Most 
experimental designs are essentially variations on the two types of experimental design: two-
condition experimental design and multivariate experimental design. The two types of design 
are discussed in the following sections. 

Two Condition Experimental Design 
The simplest experimental design is a two-condition design, for example, normal and 
diseased tissue. A simple array comparison analysis can be done using the Affymetrix 
GeneChip® Operating Software (GCOS) software to obtain Increase/Decrease, Marginal 
Increase/Marginal Decrease, or No Change calls. While this data analysis approach is a good 
first pass, it does not take into account the variance which the experimental design is created 
to capture. A parametric or non-parametric (based on numerical or rank-ordered data, 
respectively) test of the two samples must be ultimately performed. Use of these tests makes 
the assumption that the minimal number of arrays per sample type has been determined as 
previously described. Increases in sample numbers beyond this will increase the degrees of 
freedom with a corresponding incremental increase in statistical power; that is, the accuracy 
of the variance may not change but the certainty of its accuracy is increased with increasing 
sample size. 

An example of a standard two-design sample would be an experiment where the differences 
in gene expression between normal and diseased tissue are being studied. As a part of this 
design, pilot studies using quantitative PCR have been performed on a small selection of 
genes from the samples and the data used to estimate the ideal number of arrays to run for 
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each condition. Thus the experiments can be started and monitoring of CVs of intensities of 
the replicate samples can be done to determine the exact number of arrays required for each 
condition. 

As a variation on this common, two-sample experimental design, there is also the possibility 
of designing a paired experiment that takes advantage of the greater statistical power found 
in paired-sample tests. In this case, samples are identical in all attributes except for the 
experimental treatment. In this type of design, the comparisons are made between the 
individual control and the corresponding experimental sample, and then the statistics are 
performed on the results of those individual comparisons within the group. While this 
design is extremely powerful, it is also very limited in practicality and, except in specific 
cases, the use of these statistics may be challenged. For example, a paired statistical analysis 
may be questioned when comparing data from biopsies in the same patient before and after 
treatment, because the patient’s status (nutrition, health, age, hormonal cycles, etc.) may have 
changed between the first and second biopsy. However, removing a tumor from a mouse 
and comparing treated vs. control with in vitro experiments on separate sections of the same 
tumor may be acceptable for a paired statistical analysis. 

An advantage of the GeneChip technology is the ability to add additional conditions to a 
study beyond a two-sample design. Using the above example of normal vs. diseased tissue, it 
is reasonable to assume that following discovery of some putative expression changes found 
by a two sample test, various experimental conditions will be added to the study to 
determine if these changes can be enhanced or reduced. If this is a possibility, then careful 
pre-planning for this contingency can save repetition of already existing data.  

Multivariate Experimental Design 
Multivariate experiments are powerful when the goal is to examine similarities or changes 
within groups. Using the example given above of normal and diseased tissues, two treatment 
groups are now added: A and B. The final data analysis will be comprised of four separate 
data groups, each with their distinct number of samples per group, as the variance can 
sometimes be greater in treated samples than control. 

With this experimental design, there may also be opportunities to take advantage of higher-
level analyses of variance, such as 2-way tests. Again, considering the above example, the 
need may arise to examine differences in male/female response to treatment. In this case, a 
sufficient number of each gender is assayed within each sample group to allow examination 
of differences between the various conditions, as well as find any differences between male 
and female responses. 

Probe arrays may also be used to examine changes in gene expression over a given period of 
time, such as within the cell cycle. In the normal cell, the many genes involved in the cell 
cycle determine when and if the cell undergoes mitosis. Also built into this network are 
mechanisms designed to protect the body when this system fails due to mutations within one 
or more of the control genes, as is the case with cancerous cell growth. A GeneChip 
expression experiment could be designed where cell cycle data are generated in multiple 
arrays for each time point and then referenced to time zero and each subsequent time. This 
type of experimental design is fundamentally equivalent to a multi-sample design with each 
time point representing a discrete sample set. Multivariate analyses can be used to determine 
which genes are changing in relation to the other time points. However, this is a discrete 
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treatment of the data and other curve-fitting algorithms may be required for more 
sophisticated analysis. 

When planning multiple-sample experiments, there are also the equivalent paired 
multivariate analyses, which would be subject to the same restrictions as the paired two-
sample tests. 
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Chapter 3  Data Flow and Informatics Tools 
Data storage and analysis tools are fundamental components of gene expression data 
generation.  Affymetrix provides software that helps to facilitate the storage and flow of 
information throughout the experimental cycle.  Figure 6 illustrates the variety of software 
available for each step from data storage and back-up through biological interpretation. 

 

 
Figure 6. Software available for data storage, sample organization, instrument 

control, first order analysis, visualization of mining, and biological 
interpretation. 

Software Tools  
Software tools available for gene expression analysis are GCOS, GCOS Manager, GCOS 
Administrator, and GCOS Batch Importer. 

GCOS 
GCOS (GeneChip® Operating Software) provides an integrated software package for 
Expression data generation: 

• Facilitates instrument control and data acquisition  
• Provides a solution for workflow management and automation 
• Performs first order data analysis 

GCOS Manager 
GCOS Manager provides tools to: 

• Manage GeneChip microarray data in the Process and Publish databases 
• Create and manage Publish databases 

Data  
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• Import data into the Process database 
• Export experiment and analysis data 
• Create usersets for analysis 
• Define and manage templates for sample registration and experiment setup 

GCOS Administrator 
GCOS Administrator provides tools to: 

• Backup (copy) a database, sample, or experiment to a compressed file format 
(.cab) 

• Restore a database or data from a .cab file to a user-selected workstation drive or 
GCOS server 

• Automatically backup the process database on the workstation 
• Monitor available space on a workstation drive or database 

GCOS Batch Importer 
The GCOS Batch Importer: 

• Facilitates import of Affymetrix data generated using Affymetrix® Microarray 
Suite (MAS) 5.X and GCOS 1.X from a different workstation 

Data Hierarchy 
Data are managed in GCOS by tying together a set of common experiments under a larger 
umbrella group called a Project.  The Project is at the top of the hierarchy followed by 
samples, and then experiments.  This hierarchy is established when an experiment is 
registered in GCOS.   

An example of this hierarchy is illustrated in Figure 7. For the sake of simplicity, consider a 
cancer study with two patients: one patient with no disease, the other with cancer. Two 
tissue samples from each patient are taken: lung and liver. Naming of the study in GCOS 
would be as follows:  

 

Project: 
Cancer Study 

Samples: 
Normal Patient 1 

Diseased Patient 2 

Experiments: 
Normal Lung Patient 1 

Normal Liver Patient 1 

Diseased Lung Patient 2 

Diseased Liver Patient 2 
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Figure 7. GCOS Naming Strategy 
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Registration and Data Files 
 

A sample must be registered and an experiment defined in GCOS before processing a probe 
array in the fluidics station or scanning.  This registration process associates a sample with a 
project and also allows for sample and experimental attributes to be added to the Process 
database.  This registration process is the first component of data generation.  Once the 
array is scanned, an image file is created called a .dat file.  The software then computes cell 
intensity data (.cel file) from the image file.  The cell intensity data is analyzed and saved as a 
.chp file.  The .chp file contains data analysis information for each probe set on the array as 
well as controls.   A report file (.rpt) is then created from the .chp.  Figure 8 illustrates this 
process from registration through generating an expression report. 

 

 
Figure 8. Experimental Data Flow Chart in GCOS 

 

 

 

Register sample and define experiment 
 

Process probe array in fluidics station 
 

Scan probe array and save image data  
(.dat file created) 

 

Compute cell intensity data from the image data and save 
cell intensity data 

(.cel file created) 
 

Analyze expression cell intensity data and save 
expression probe analysis data  

(.chp file created) 
 

Generate expression report 
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Data are organized in GCOS as follows: 

Experiment Data  

File Name  

File 
Extension  

Description 

Experiment 
Information File  

N/A  Contains information about the experiment name, 
sample, and probe array type. The experiment 
name also provides the name for subsequent test 
data files generated during the analysis of the 
experiment. 

Data File  *.dat  The image of the scanned probe array. 

Cell Intensity File  *.cel  The software derives the *.cel file from a *.dat file 
and automatically creates it upon opening a *.dat 
file. It contains a single intensity value for each 
probe cell delineated by the grid (calculated by the 
Cell Analysis algorithm). 

Chip File  *.chp  The output file generated from the analysis of a 
probe array.  Contains qualitative and quantitative 
analysis for every probe set. 

Report File  *.rpt  Text file summarizing data quality information for 
a single experiment.  The report is generated from 
the analysis output file (*.chp). 

Cab File *.cab A compressed file that is a backup copy of a 
process or publish database, project, sample, 
and/or experiment. 

Data File    *.txt, *.xls  A standard format for text files. GCOS exports text 
in this file format. A standard format for Excel 
files. 

Library Files *.cif, *.cdf, 
*.psi  

The probe information or library files contain 
information about the probe array design 
characteristics, probe utilization and content, and 
scanning and analysis parameters. These files are 
unique for each probe array type. 

Fluidics Files  *.bin, *.mac  The fluidics files contain information about the 
washing, staining, and/or hybridization steps for a 
particular array format. 
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Chapter 4  First-Order Data Analysis and Data Quality 
Assessment 

Single Array Analysis 
This section describes a basic GeneChip® array analysis procedure that can be applied to 
many analysis situations. This procedure can be modified to account for specific 
experimental situations. It is highly recommended that, before attempting to modify this 
procedure, users familiarize themselves with the scaling strategies and settings involved in 
array analysis. More detailed information can be found in the GeneChip® Operating 
Software (GCOS) User Guide. 

The following instructions assume that a probe array has been hybridized, washed, stained, 
and scanned according to the directions detailed in the Affymetrix GeneChip® Expression 
Analysis Technical Manual. Upon completion of the scan, the image file (.dat) is displayed in 
the GCOS software. After analysis of arrays, the procedures described later in this chapter 
can be used to assess the quality of the data generated. 

These instructions relate to analyses performed in GCOS. 

 

Data Storage 
GCOS can be configured to store data on the local workstation’s database or on a network 
accessible remote GCOS server. The default setting in GCOS is for the data to be stored in 
Local mode. In the GCOS user interface window, the heading of the Data Tree window 
pane will display: ‘Data Source: Local.’ In the Local mode, data are stored in the local MSDE 
database.  See Figure 9 for an illustration of GCOS in local mode. 

To register a server in GCOS, a remote GCOS server name can be entered during GCOS 
installation.  After a server is registered, connecting to the server is performed as follows: 
From the menu bar, select Tools and then select Defaults. In the Defaults dialog box, select 
the Database tab. Choose the GCOS Server option. Experimental data will now be stored 
on the GCOS server. If the GCOS Server option is not selected, data are stored locally. 
Upon connecting to the server, the heading of the Data Tree window pane will display: 
‘Data Source: GCOS Server.’ 
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Figure 9. GCOS is set to Local Mode unless the option for the GCOS Server is 

selected. 

Filtering Data 
Filters may be applied to the experiment data. The filters determine the data that GCOS 
displays in the data tree, the sample history view, workflow monitor, and the instrument 
control dialog boxes. Filters are applied on a per user basis (identified by the logon name). 
Filters can be applied by selecting “Tools” and then “Filters” from the menu bar. After 
filters are applied, the status bar in the lower-right corner of the GeneChip Operating 
Software window indicates ‘Filters applied.’ 

Quality Assessment of .dat Image 
Prior to conducting array analysis, the quality of the array image (.dat file) should be assessed 
following the guidelines in this training manual. 

Select a Scaling Strategy 
These instructions use a global scaling strategy that sets the average Signal intensity of the 
array to a default Target Signal of 500. The key assumption of the global scaling strategy is 
that there are few changes in gene expression among the arrays being analyzed. This is a 
common strategy employed by many users, however, it should be noted that this strategy 
may not be appropriate for all experiments. Further discussion on scaling strategies and how 
to implement them can be found in Appendix E of the GeneChip Operating Software User 
Guide Version 1.1. 

Expression Analysis Set-Up 
A Single Array Analysis will create a .chp file from a .cel image file. GCOS automatically 
generates the .cel image file from the .dat file. To perform a Single Array Analysis, settings 
relating to file locations and the analysis must first be defined. 
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Specifying File-Related Settings 
1 Select “Defaults” from the “Tools” pull-down menu. 

2 Select the “Analysis Settings” tab. 

2.1 Check “Prompt For Output File” to ensure display of output file name for 
confirmation or editing. With this option checked, GCOS will prompt for new 
file names for each analysis, preventing unintentional overwrite. 

2.2 Check “Display Settings When Analyzing Data” to ensure display of expression 
settings for confirmation or editing. 
 
Data files in GCOS by default are located in:  
C:\GeneChip\Affy_Data\Data folder.   
 
Library files in GCOS by default are located in:  
C:\GeneChip\Affy_Data\Library folder. 
 
Fluidics Protocols in GCOS by default are located in:  
C:\GeneChip\Affy_Data\Protocols folder. 

3 Select the “Database” tab. The tab specifies how GCOS manages experiment data, 
including image, cell intensity, and probe analysis data. Choose the GCOS Server option 
to store the experiment data on the remote GCOS server. If this option is not chosen, 
the experiment data are stored on the MSDE database on the workstation.   

Note: The Experiment Data Storage option is only available if all windows are closed and 
no instruments are active.  

4 Select “OK.” 

Expression Analysis Settings 
1 Select “Expression Analysis Settings” from the “Tools” pull-down menu. The 

“Expression Analysis Settings” dialogue box opens. 

2 Select the “Probe Array Type” to be analyzed from the drop-down menu. 

3 Select the “Scaling” tab. 

3.1 Select “All Probe Sets” and set “Target Signal” to 500 or to desired Target 
Signal. 

4 Select the “Normalization” tab. 

4.1 Select “User Defined” and place a “1” in the "Normalization Value” box. This 
ensures that no normalization procedure is applied to the data. Normalization is 
not necessary as the data are being scaled. Further information can be found in 
Appendix E of the GeneChip Operating Software User Guide Version 1.1. 

5 Select the “Probe Mask” tab. This feature is used to mask user-defined probe cells. 

5.1 Ensure that the “Use Probe Mask File” option is not selected. 

6 Select the “Baseline” tab. For single array analysis no baseline file should be used. 
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6.1 Ensure “Use Baseline File Comparison” is not selected. 

7 Select the “Parameters” tab. 

7.1 Confirm default settings appropriate to the version of GCOS and the array being 
analyzed as specified in Appendix C of this training manual. 

Note:  These Settings should not be adjusted unless the user has advanced experience with 
the Affymetrix GeneChip® system. 

8 Once all settings have been adjusted or confirmed select “OK” to define settings and 
close the dialogue box. 

Performing Single Array Analysis 
1. Open the file you wish to analyze (.dat or .cel) by double clicking on the file name in the 

data file tree. Alternatively, select “Open” from the “File” pull-down menu and select 
the image file you wish to analyze. 

1.1. After the .dat or .cel file image is displayed, the “Analyze” button on the menu bar 
is activated. Click the “Analyze” button. Verify the .chp file name. The default 
corresponds to the name of the .dat/.cel file names. Edit the .chp file name, if 
necessary, and click “OK.” 

1.2. The alternative is to select “Analysis” from the “Run” pull-down menu. 

Note: GCOS will automatically overwrite a .chp file if the filename is the same as an 
existing .chp file in the directory. 

1.3. Verify “Expression Analysis Settings” in the subsequent pop-up window as 
previously set in the above Expression Analysis Settings section and select “OK” to 
begin analysis and generate the analysis results file (.chp). 

1.4. The GCOS status window will indicate that analysis has started. 

2. Once analysis is complete, generate an Expression Analysis report file (.rpt) and review 
the quality control metrics. 

2.1. To generate the report, select “Report” from the “File” pull-down menu. 

2.2. Select the appropriate analysis results file (.chp). 

NOTE: Alternatively, you can highlight the appropriate .chp file in the data file tree, right 
click on the mouse and select “Report.” 

2.3. Review the quality control data as discussed in the “Guidelines for Assessing Data 
Quality” section. 

2.3.1. Review bioB, bioC, bioD, and cre sensitivity spikes. 

2.3.2. Review Percent Present determination. 

2.3.3. Review housekeeping control signal output and 3’/5’ ratios. 

2.3.4. Review noise (Raw Q). 
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2.3.5. Review average background. 

2.4. Return to the .chp file by closing the Report (.rpt) file, or by selecting “Window” 
from the Menu toolbar and select the .chp file. 

NOTE: The open .chp file data are displayed in the Expression Analysis Window (EAW) 
and can be accessed by clicking on the Expression Analysis button in the GCOS shortcuts 
window. 

3. Select the “Pivot” tab at the bottom of the analysis results .chp file. The Pivot table 
displays analysis output and descriptions for each transcript represented on the probe 
array. The far-left column contains the Affymetrix unique probe set identifier and the 
column to the far-right contains a brief description of the sequence that the probe set 
represents. 

3.1. Display additional Pivot table columns in the analysis by selecting “Pivot 
Data>Absolute Results” from the “View” pull-down menu. Select the columns 
desired to be displayed. Columns may include “Signal,” “Detection,” “Detection p-
value,” “Stat Pairs,” and “Stat Pairs Used.” 

NOTE: Values in the “Signal” column reflect intensity. The “Detection” column assigns a 
call of “Present,” “Absent,” or “Marginal” to each probe set and the “Detection p-value” 
column provides an assessment of statistical significance of each call. The “Descriptions” 
column provides summary information about each transcript. Right click on a transcript of 
interest to link to an external database for more information. 

3.2. Select the “Metrics” tab at the bottom of the .chp file. 

3.3. The Metrics table displays data for each distinct probe set in the .chp file. The 
columns displayed are similar to the Pivot table. 

3.3.1. Organize the tabular data columns by right clicking at the top of the column 
to “Hide Column.” 

3.3.2. Sort by right clicking on the column header and selecting the desired sorting 
function. 

NOTE: Refer to the section titled “Interpretation of Metrics” for recommendations on 
data interpretation. 

3.4. Select the “Analysis Info” tab at the bottom of the analysis results or .chp file. The 
Analysis Information table displays experimental and sample information and 
algorithm settings information. This information includes Scaling or Normalization 
factors, Background, Raw Q, and Sample Type information. 

Once a single array analysis has been completed and a .chp file generated, this file can be 
further utilized in a number of ways. The file can be used as a “baseline” file in a comparison 
analysis. The .chp file can also be published into a publish database, becoming accessible for 
advanced data mining software. The .chp file data can also be exported from GCOS as a text 
file allowing the data to be imported into third-party programs (e.g., Microsoft® Excel). 



GENECHIP® EXPRESSION ANALYSIS 

Page 32 

Comparison Analysis 
Comparison analysis is used to compare expression profiles from two GeneChip® probe 
arrays of the same type. One array is designated as a baseline and the other is designated as 
experimental. The experimental file is analyzed in comparison to the baseline file. While the 
designations “experimental” and “baseline” are arbitrary, it is important to keep these 
designations in mind when examining the changes reported. For example, if the baseline file 
is derived from a treated sample and the experimental from an untreated sample, all genes 
activated by the treatment will have decrease calls. 

Quality Assessment of .dat Image 
Prior to conducting analysis of an array, the quality of the array image (.dat file) should be 
assessed following the guidelines found in the section “Guidelines for Assessing Data 
Quality.” 

NOTE: Single-array (or ‘absolute’) analyses must be previously completed and .chp files 
present for all samples that will be used as baseline files. 

When conducting a Comparison Analysis it is important to ensure that the scaling strategy 
used for the Comparison Analysis is the same as that used to generate the baseline file. To 
examine the analysis settings of the baseline file, right click the baseline .chp file in the Data 
File Tree and select “Information.” The following fields are of note: 

TGT Target Signal value used in both arrays should be the same.  The 
default value is 500. 

SF Displays the scaling factor calculated. In this protocol this should 
NOT be 1.0000. 

NF Displays the normalization factor applied. In this protocol the value 
should be 1.0000, as no normalization was used. 

SF Gene Displays the Scaling strategy used. In this protocol the value should 
be ‘All,’ as the global scaling strategy was used. 

Comparison Analysis Set-Up 
Like the Single Array Analysis, Comparison Analysis will create a .chp file from a .cel image 
file. GCOS automatically generates the .cel image file from the .dat file. To perform a 
Comparison Analysis, settings relating to analysis must first be defined. 

Expression Analysis Set-Up 
1 Close any .chp files that are currently open and Select “Expression Settings” from the 

“Tools” pull-down menu. The “Expression Analysis Settings” dialogue box opens. 

2 Select the “Probe Array Type” to be analyzed from the drop-down menu. 
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2.1 Select the “Scaling” tab. 

3 Select “All Probe Sets” and set the appropriate “Target Signal.” 

3.1 Select the “Normalization” tab. 

4 Select “User Defined” and place a “1” in the “Normalization Value” box. 

5 Select the “Probe Mask” tab. This feature is used to mask user-defined probe cells. 

5.1 Ensure that the “Use Probe Mask File” option is unchecked. 

6 Select the “Baseline” tab. 

6.1 Check the “Use Baseline File Comparison” option. 

6.2 Click the “Browse” button. 

6.3 Select the baseline .chp file. 

6.4 Click the “OK” button. 

7 Select the “Parameters” tab. 

7.1 Confirm default settings appropriate to the version of GCOS and array being 
analyzed as specified in Appendix C of this training manual.  

NOTE: These Settings should not be adjusted unless the user has advanced experience 
with the Affymetrix GeneChip® system. 

8 Once all settings have been adjusted or confirmed select “OK” to define settings and 
close the dialogue box. One can now perform comparison analyses based upon these 
settings. 

Performing Comparison Analysis 
1 Open the designated experimental file (.dat or .cel) by double clicking in the data file 

tree. Alternatively, select “Open” from the “File” pull-down menu and select the 
experimental file. 

2 Select “Analysis” from the “Run” pull-down menu. Alternatively, click the Analyze 
button. 

2.1 Verify the .chp filename. The default corresponds to the name of the 
experimental .exp/.dat/.cel file names.  Edit the .chp filename, if necessary, and 
click “OK.” 

NOTE: GCOS will overwrite a .chp file if the filename is the same as an existing .chp file 
in the directory. 

2.2 Verify “Expression Analysis Settings” in the subsequent pop-up window as 
previously set in the above Expression Analysis Settings section and select “OK” 
to begin analysis and generate the .chp file. 

2.3 The GCOS status window will indicate that analysis has started. 

3 Once analysis is complete, generate an Expression Analysis report file (.rpt) and review 
the quality control metrics as described. 
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3.1 To generate the report, select “Report” from the “File” pull-down menu. 

3.2 Select the appropriate analysis results file (.chp). 

NOTE: All metrics reported in a comparison file report refer to the designated 
experimental file, NOT the baseline file. 

3.3 Review the quality control data. 

3.3.1 Review bioB, bioC, bioD, and cre sensitivity spikes. 

3.3.2 Review Percent Present determination. 

3.3.3 Review housekeeping control signal output 3’/5’ ratios. 

3.3.4 Review noise (Raw Q). 

3.3.5 Review average background. 

3.4 Return to the .chp file by closing the Report (.rpt) file. 

NOTE: The open .chp file data is displayed in the Expression Analysis Window (EAW) 
and can be accessed by clicking on the Expression Analysis button in the GCOS shortcuts 
window. 

4 Select the “Pivot” tab at the bottom of the .chp file. The Pivot table displays analysis 
output and descriptions for each transcript represented on the probe array. The far-left 
column contains the Affymetrix unique probe set identifier and the column on the far-
right provides a brief description of the sequence that the probe set represents. 
Display additional Pivot table columns in the analysis by selecting “Pivot 
Data>Comparison Results” from the “View” pull-down menu. Select the columns 
desired to be displayed. Suggested columns may include “Signal Log Ratio,” “Change,” 
and “Change p-value.” 
Alternatively, clicking the “Options” button in the shortcut menu and selecting the Pivot 
tab in the Analysis Options window will also enable column selection.  
Select the “Metrics” tab at the bottom of the .chp file. The Metrics table displays data for 
each distinct probe set in the .chp file. Columns displayed are similar to the Pivot table. 
In the Pivot table, sort data by right clicking the mouse on the column header and 
selecting the desired sorting function. These useful functions enable you to sort the data 
in ascending or descending order and to hide or unhide columns. For example, if you are 
interested in only those genes which are “Increasing” and have increased at a “Signal Log 
Ratio” of > 1, the following steps are performed: 

4.1 Point the mouse cursor to the Change column header and right-click. Choose 
Sort Ascending. Press OK. Probe sets will be sorted in the following Change 
order: D, I, MD, MI, NC.  

4.2 To display those probe sets with a Change call of “I,” all probe sets with a 
Change call other than “I” need to be hidden.  

4.2.1 Make sure that the scroll bar is at the top of the Pivot table page. Scroll 
down to the first probe set in the table with the Change call “I.” Point 
the mouse cursor to the left column containing the probe set ID. Click 
the mouse to highlight the entire row.  
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4.2.2 Press the Shift key once and scroll down to the last probe set in the table 
with the Change call of “I.” Point the mouse cursor to the probe set ID 
in the left-hand column, press the Shift key, and click the mouse. All 
rows, between and including those of the first and last probe set chosen, 
will be highlighted.  

4.2.3 Select the Hide All Unselected Probe Sets button in the Shortcut menu 
bar. (Note: There are two Hide buttons on the shortcut menu bar. Make 
sure the correct one is chosen.) The unselected probe sets will be hidden. 
The probe sets not hidden will have the Change call of “I.” 

4.3 With only probe sets having the Change call of “I” displayed, now sort the Signal 
Log Ratio in ascending order. Point the mouse cursor on the Signal Log Ratio 
column header, right-click and choose Sort Ascending Order.  

4.4 Then choose probe sets with Signal Log Ratio > 1 using similar operational steps 
as outlined in Step b) above.  

NOTE: Refer to Chapter 5 for recommendations.  

After the comparison analysis .chp file has been generated, this file can be further utilized in 
a number of ways. The .chp file can also be published into the Publish databases in MSDE 
(local or client mode) or GCOS Server, becoming accessible for data mining with the data 
mining software. The .chp file data can also be exported from GCOS as a text file allowing 
the data to be imported into third-party programs (e.g., Microsoft Excel). 

Using the Batch Analysis Tool 
Batch analysis is a way to analyze many .cel files and generate .chp files with unattended 
operation. Many files can be simultaneously compared to a selected baseline. Files from 
different experiments may also be simultaneously analyzed. It is important to select a 
different name for the analysis output (.chp file) otherwise batch analysis will overwrite the 
previous files. Either the Drag and Drop method or the Toolbar can be used to select files 
for batch analysis. Further details can be found in Chapter 11 of the Affymetrix GCOS User 
Guide Version 1.1. 

NOTE: Prior to batch analysis, check the Expression Analysis settings and ensure that 
they are correct (i.e., select the “Baseline” tab and ensure “Use Baseline File Comparison” 
is unchecked). 

1. Open the Batch Analysis window by selecting “Batch Analysis” from the “Run” menu. 
Alternatively, click on the Batch Analysis icon in the GeneChip Software section of the 
Shortcut bar. 

2. Add files to the Batch Analysis window by: 

2.1. Dragging and Dropping each .cel or .chp file to the Batch Analysis window from 
the data file tree to the Batch Analysis window. 
 
OR 

2.2. Using the Toolbar, click the “Add” Toolbar or select “Edit>Add.” 
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2.3. An open dialog of .cel files appears. 

2.4. Select the .cel or .chp files to be analyzed. 

2.5. To select all files, hold “shift” while you click on the first and last file. 

2.6. To select files individually, hold “control” while selecting files. 

2.7. Click open to place the files into the Batch Analysis window. 

3. Verify the Output filenames. 

3.1. The filename for the .chp file is listed in the Output column. If the .chp filename is 
already present the filename will be in red to indicate that a file is going to be 
overwritten. 

3.2. To edit the .chp file name, double click on the output file name and type in a new 
name. 

4. To select the baseline file, double click in the Baseline column corresponding to the .cel 
file being analyzed or click the .cel file and choose “Select Baseline” from the “Edit” 
pull-down menu. 

4.1. Double click on the baseline .chp file from the dialog box. 

4.2. Right clicking the baseline file and selecting “Clear Baseline” or selecting 
“Edit>Clear Baseline” can remove a baseline file in the batch analysis window. 

5. To start the Batch Analysis, click on the Analyze button which is found immediately 
above the Batch Analysis window. 

Guidelines for Assessing Data Quality 
The purpose of this section is to help researchers establish quality control processes for gene 
expression analyses. To achieve this, Affymetrix has developed several controls which allow 
researchers to monitor assay data quality. 

The following are a series of quality control parameters associated with assay and 
hybridization performance. Affymetrix highly encourages new users to create a running log 
of these parameters in order to monitor quality and potentially flag outlier samples. 
Evaluation of a particular sample should be based on the examination of all sample and array 
performance metrics. 

Probe Array Image (.dat) Inspection 
Inspect for the presence of image artifacts (i.e., high/low intensity spots, scratches, high 
regional, or overall background, etc.) on the array.  Please contact your Field Applications 
Specialist (FAS) or 888-DNA-CHIP for further advice on image artifacts. 

B2 Oligo Performance 
The boundaries of the probe area (viewed upon opening the .dat/.cel file) are easily 
identified by the hybridization of the B2 oligo, which is spiked into each hybridization 
cocktail. Hybridization of B2 is highlighted on the image by the following: 

1. The alternating pattern of intensities on the border 
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2. The checkerboard pattern at each corner (Refer to Figure 10) 

3. The array name, located in the upper-left or upper-middle of the array (Refer to 
Figure 11) 

B2 Oligo serves as a positive hybridization control and is used by the software to place a grid 
over the image. Variation in B2 hybridization intensities across the array is normal and does 
not indicate variation in hybridization efficiency. If the B2 intensities at the checkerboard 
corners are either too low or high, or are skewed due to image artifacts, the grid will not 
align automatically. The user must align the grid manually using the mouse to click and drag 
each grid corner to its appropriate checkerboard corner. 

The B2 oligonucleotide is available as part of the GeneChip® Eukaryotic Hybridization 
Control Kit (P/N 900299 and 900362), and can also be ordered separately (P/N 900301). 

 
Figure 10. An example of B2 illuminating the corner and edges of the array. 

 
Figure 11. The array name. 

After scanning the probe array, the resulting image data are stored on the hard drive of the 
GeneChip® Operating Software workstation, or on the process database, as a .dat file with 
the name of the scanned experiment. In the first step of the analysis, a grid is automatically 
placed over the .dat file demarcating each probe cell. One of the probe array library files, the 
.cif file, is used by the GeneChip® Operating Software to determine the appropriate grid size 
to use. Confirm the alignment of the grid by zooming in on each of the four corners and on 
the center of the image. 

If the grid is grossly misaligned (i.e., more than two pixels off), adjust the alignment by 
placing the cursor on an outside edge or corner of the grid. The cursor image will change to 
a small double-headed arrow. The grid can then be adjusted using the arrow keys on the 
keyboard or by clicking and dragging the borders with the mouse.  
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Average Background and Noise Values 
The Average Background and Noise (Raw Q) values can be found either in the Analysis Info 
tab of the Data Analysis (.chp) file, or in the Expression Report (.rpt) file. Although there are 
no official guidelines regarding background, Affymetrix has found that typical Average 
Background values range from 20 to 100 for arrays scanned with the GeneChip® Scanner 
3000.  Arrays being compared should ideally have comparable background values. 

Noise (Raw Q) is a measure of the pixel-to-pixel variation of probe cells on a GeneChip 
array. The two main factors that contribute to noise are: 

1. Electrical noise of the scanner. 

2. Sample quality. 

Each scanner has a unique inherent electrical noise associated with its operation. Since a 
significant portion of Noise (Raw Q) is electrical noise, values among scanners will vary. 
Array data (especially those of replicates) acquired from the same scanner should ideally have 
comparable Noise values. 

Poly-A Controls: lys, phe, thr, dap 
Poly-A RNA controls can be used to monitor the entire target labeling process.  Dap, lys, phe, 
thr, and trp are B. subtilis genes that have been modified by the addition of poly-A tails, and 
then cloned into pBluescript vectors, which contain T3 promoter sequences. Amplifying 
these poly-A controls with T3 RNA polymerase will yield sense RNAs, which can be spiked 
into a complex RNA sample, carried through the sample preparation process, and evaluated 
like internal control genes.  The GeneChip® Poly-A RNA Control Kit (P/N 900433) 
contains a pre-synthesized mixture of lys, phe, thr, and dap. The final concentrations of the 
controls, relative to the total RNA population, are: 1:100,000; 1:50:000; 1:25,000; 1:7,500, 
respectively.  All of the Poly-A controls should be called “Present” with increasing Signal 
values in the order of lys, phe, thr, dap.   

Hybridization Controls: bioB, bioC, bioD, and cre 
BioB, bioC and bioD represent genes in the biotin synthesis pathway of E. coli. Cre is the 
recombinase gene from P1 bacteriophage. The GeneChip®  Eukaryotic Hybridization 
Control Kit (P/N 900299 and 900362) contains 20x Eukaryotic Hybridization Controls that 
are composed of a mixture of biotin-labeled cRNA transcripts of bioB, bioC, bioD, and cre, 
prepared in staggered concentrations (1.5 pM, 5 pM, 25 pM, and 100 pM final 
concentrations for bioB, bioC, bioD, and cre, respectively). 

The 20x Eukaryotic Hybridization Controls are spiked into the hybridization cocktail, 
independent of RNA sample preparation, and are thus used to evaluate sample hybridization 
efficiency on eukaryotic gene expression arrays. BioB is at the level of assay sensitivity 
(1:100,000 complexity ratio) and should be called “Present” at least 50% of the time. BioC, 
bioD, and cre should always be called “Present” with increasing Signal values, reflecting their 
relative concentrations. 

The 20x Eukaryotic Hybridization Controls can be used to indirectly assess RNA sample 
quality among replicates. When global scaling is performed, the overall intensity for each 
array is determined and is compared to a Target Intensity value in order to calculate the 
appropriate scaling factor. The overall intensity for a degraded RNA sample, or a sample that 
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has not been properly amplified and labeled, will have a lower overall intensity when 
compared to a normal replicate sample. Thus, when the two arrays are globally scaled to the 
same Target Intensity, the scaling factor for the “bad” sample will be much higher than the 
“good” sample. However, since the 20x Eukaryotic Hybridization Controls are added to 
each replicate sample equally (and are independent of RNA sample quality), the intensities of 
the bioB, bioC, bioD, and cre probe sets will be approximately equal. As a result, the Signal 
values (adjusted by scaling factor) for these control probe sets on the “bad” array will be 
adjusted higher relative to the Signal values for the control probe sets on the “good” array. 

Internal Control Genes 
For the majority of GeneChip® expression arrays, β-actin and GAPDH are used to assess 
RNA sample and assay quality. Specifically, the Signal values of the 3’ probe sets for actin 
and GAPDH are compared to the Signal values of the corresponding 5’ probe sets. The 
ratio of the 3’ probe set to the 5’ probe set is generally no more than 3 for the 1-cycle assay. 
Since the Affymetrix eukaryotic expression assay has an inherent 3’ bias (i.e., antisense 
cRNA is transcribed from the sense strand of the synthesized ds cDNA, via the 
incorporated T7 promoter), a high 3’ to 5’ ratio may indicate degraded RNA or inefficient 
transcription of ds cDNA or biotinylated cRNA. 3’ to 5’ ratios for internal controls are 
displayed in the Expression Report (.rpt) file.  The 2-cycle assay typically gives higher 3’ to 5’ 
ratios than the 1-cycle assay, due to the additional cycle of amplification. 

There are occasions when the 3’ to 5’ ratio of one internal control gene is normal, but the 3’ 
to 5’ ratio of another internal control gene is high. This discrepancy in 3’ to 5’ ratios is most 
likely due to a specific transcript-related or image artifact issue and is not an indication of 
overall sample and assay quality. 

Percent Present 
The number of probe sets called “Present” relative to the total number of probe sets on the 
array is displayed as a percentage in the Expression Report (.rpt) file. Percent Present (%P) 
values depend on multiple factors including cell/tissue type, biological or environmental 
stimuli, probe array type, and overall quality of RNA. Replicate samples should have similar 
%P values. Extremely low %P values are a possible indication of poor sample quality. 
However, the use of this metric must be evaluated carefully and in conjunction with the 
other sample and assay quality metrics described in this chapter. 

Scaling and Normalization Factors 
Details regarding Scaling and Normalization are listed in the GeneChip® Operating Software 
User Guide Version 1.1, Appendix E. Scaling and normalization factors can be found in the 
Analysis Info tab of the .chp file output and in the Expression Report (.rpt) file. 

For the majority of experiments where a relatively small subset of transcripts is changing, the 
global method of scaling/normalization is recommended. In this case, since the majority of 
transcripts are not changing among samples, the overall intensities of the arrays should be 
similar. Differences in overall intensity are most likely due to assay variables including 
pipetting error, hybridization, washing, and staining efficiencies, which are all independent of 
relative transcript concentration. Applying the global method corrects for these variables. 
For global scaling, it is imperative that the same Target Intensity value is applied to all arrays 
being compared. 
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For some experiments, where a relatively large subset of transcripts is affected, the “Selected 
Probe Sets” method of scaling/normalization is recommended. The global approach does 
not make sense in this situation since the overall intensities among arrays are no longer 
comparable. Differences in overall intensity are due to biological and/or environmental 
conditions. Applying the global method skews the relative transcript concentrations. One 
option is to apply the “Selected Probe Sets” method using the 100 Normalization Control 
probe sets, which are available for the major catalog arrays. 

For replicates and comparisons involving a relatively small number of changes, the 
scaling/normalization factors (calculated by the global method) should be comparable 
among arrays. Larger discrepancies among scaling/normalization factors (e.g., three-fold or 
greater) may indicate significant assay variability or sample degradation leading to noisier 
data. 

Scaling/normalization factors calculated by the “Selected Probe Sets” method should also be 
equivalent for arrays being compared. Larger discrepancies between scaling/normalization 
factors may indicate significant assay or biological variability or degradation of the transcripts 
used for scaling/normalization, which leads to noisier data. 
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Chapter 5  Statistical Algorithms Reference 
This chapter is a reference for the Affymetrix Statistical Algorithms used in the expression 
analysis of GeneChip® probe arrays. It provides the user with a basic description of the 
mathematical concepts behind expression measurements for either single array or 
comparison analysis. 

The Statistical Algorithms were implemented in Affymetrix® Microarray Suite Version 5.0. 
Previous versions of the GeneChip® Analysis Suite and Affymetrix Microarray Suite used the 
Empirical Algorithms. 

The Statistical Algorithms were developed using standard statistical techniques. The 
performance was validated using an experimental design called the Latin Square. In this 
experimental design, transcripts, naturally absent in the complex background, were spiked in 
at known concentrations. 

Single Array Analysis 
Single array analysis can be used to build databases of gene expression profiles, facilitate 
sample classification and transcript clustering, and monitor gross expression characteristics. 
In addition, the analyses provide the initial data required to perform comparisons between 
experiment and baseline arrays. 

This analysis generates a Detection p-value which is evaluated against user-definable cut-offs 
to determine the Detection call. This call indicates whether a transcript is reliably detected 
(Present) or not detected (Absent). Additionally, a Signal value is calculated which assigns a 
relative measure of abundance to the transcript. 

Figure 12 illustrates the output of Single Array Analysis in GeneChip Operating Software. 
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Figure 12. Data analysis output (.chp file) for a Single Array Analysis includes 
Stat Pairs, Stat Pairs Used, Signal, Detection, and the Detection  
p-value. 

Detection Algorithm 
The Detection algorithm uses probe pair intensities to generate a Detection p-value and 
assign a Present, Marginal, or Absent call. Each probe pair in a probe set is considered as 
having a potential vote in determining whether the measured transcript is detected (Present) 
or not detected (Absent). The vote is described by a value called the Discrimination score 
[R]. The score is calculated for each probe pair and is compared to a predefined threshold 
Tau. Probe pairs with scores higher than Tau vote for the presence of the transcript. Probe 
pairs with scores lower than Tau vote for the absence of the transcript. The voting result is 
summarized as a p-value. The greater the number of discrimination scores calculated for a 
given probe set that are above Tau, the smaller the p-value and the more likely the given 
transcript is truly Present in the sample. The p-value associated with this test reflects the 
confidence of the Detection call. 

Detection p-value 
A two-step procedure determines the Detection p-value for a given probe set. 

1. Calculate the Discrimination score [R] for each probe pair. 

2. Test the Discrimination scores against the user-definable threshold Tau. 
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The Discrimination score is a basic property of a probe pair that describes its ability to 
detect its intended target. It measures the target-specific intensity difference of the probe 
pair (PM-MM) relative to its overall hybridization intensity (PM+MM): 

R = (PM - MM) / (PM + MM) 

For example, if the PM is much larger than the MM, the Discrimination score for that probe 
pair will be close to 1.0 (e.g., probe pair 1 in Figure 13). If the Discrimination scores are 
close to 1.0 for the majority of the probe pairs, the calculated Detection p-value will be lower 
(more significant). A lower p-value is a reliable indicator that the result is valid and that the 
probability of error in the calculation is small. Conversely, if the MM is larger than or equal 
to the PM, then the Discrimination score for that probe pair will be negative or zero (e.g., 
probe pairs 8, 9, and 10 in Figure 13). If the Discrimination scores are low for the majority 
of the probe pairs, the calculated Detection p-value will be higher (less significant). 

 
Figure 13. In this hypothetical probe set, the Perfect Match (PM) intensity is 80 

and the Mismatch (MM) intensity for each probe pair increases from 
10 to 100. The probe pairs are numbered from 1 to 10. As the Mismatch 
(MM) probe cell intensity, plotted on the x-axis, increases and 
becomes equal to or greater than the Perfect Match (PM) intensity, the 
Discrimination score decreases as plotted on the y-axis. More 
specifically, as the intensity of the Mismatch (MM) increases, our 
ability to discriminate between the PM and MM decreases. The 
dashed line is the user-definable parameter Tau (default = 0.015). 

The next step toward the calculation of a Detection p-value is the comparison of each 
Discrimination score to the user-definable threshold Tau. Tau is a small positive number 
that can be adjusted to increase or decrease sensitivity and/or specificity of the analysis 
(default value = 0.015). The One-Sided Wilcoxon’s Signed Rank test is the statistical method 
employed to generate the Detection p-value. It assigns each probe pair a rank based on how 
far the probe pair Discrimination score is from Tau. 
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Tunable Parameter Tip: Increasing the threshold Tau can reduce the number of false 
Present calls, but may also reduce the number of true Present calls. Note: Changing Tau 
directly influences the calculation of the Detection p-value.  Please refer to the Tunable 
Parameters tech note, “Fine Tuning Your Data Analysis: Tunable Parameters of the 
Affymetrix® Expression Analysis Statistical Algorithms” for more information. 

Detection Call 
The user-modifiable Detection p-value cut-offs, Alpha 1 (α1) and Alpha 2 (α 2) (See Figure 
14), provide boundaries for defining Present, Marginal, or Absent calls. At the default 
settings, determined for probe sets with 16–20 probe pairs (defaults α 1 = 0.04 and α 2 = 
0.06), any p-value that falls below α 1 is assigned a Present call, and above α 2 is assigned an 
Absent call. Marginal calls are given to probe sets which have p-values between α 1 and α 2 

(see Figure 14). The p-value cut-offs can be adjusted to increase or decrease sensitivity and 
specificity. 

 
Figure 14. Significance levels α1 and α2 define cut-offs of p-values for Detection 

calls.  Please note that these cut-offs are for probe sets with 16-20 probe 
pairs. 

Significance levels α1 and α2 define cut-offs of p-values for Detection calls. Note that these 
cut-offs are for probe sets with 16–20 probe pairs. 

It is important to note that prior to the two-step Detection p-value calculation, the level of 
photomultiplier saturation for each probe pair is evaluated. If all probe pairs in a probe set 
are saturated, the probe set is immediately given a present call.  

In summary, the Detection Algorithm assesses probe pair saturation, calculates a Detection 
p-value, and assigns a Present, Marginal, or Absent call. 

Signal Algorithm 
Signal is a quantitative metric calculated for each probe set, which represents the relative 
level of expression of a transcript. Signal is calculated using the One-Step Tukey’s Biweight 
Estimate which yields a robust weighted mean that is relatively insensitive to outliers, even 
when extreme. 

0 0 . 10 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8

α 1 α 2

p-   v a l u e

A b s e n tM a r g in a lP r e s e n t 



DATA ANALYSIS FUNDAMENTALS 

Page 45 

 

Similar to the Detection algorithm, each probe pair in a probe set is considered as having a 
potential vote in determining the Signal value. The vote, in this case, is defined as an estimate 
of the real signal due to hybridization of the target. The mismatch intensity is used to 
estimate stray signal. The real signal is estimated by taking the log of the Perfect Match 
intensity after subtracting the stray signal estimate. The probe pair vote is weighted more 
strongly if this probe pair Signal value is closer to the median value for a probe set. Once the 
weight of each probe pair is determined, the mean of the weighted intensity values for a 
probe set is identified. This mean value is corrected back to linear scale and is output as 
Signal. 

When the Mismatch intensity is lower than the Perfect Match intensity, then the Mismatch is 
informative and provides an estimate of the stray signal. Rules are employed in the Signal 
algorithm to ensure that negative Signal values are not calculated. Negative values do not 
make physiological sense and make further data processing, such as log transformations, 
difficult. Mismatch values can be higher than Perfect Match values for a number of reasons, 
such as cross hybridization. If the Mismatch is higher than the Perfect Match, the Mismatch 
provides no additional information about the estimate of stray signal. Therefore, an imputed 
value called Idealized Mismatch (IM) is used instead of the uninformative Mismatch (see 
Figure 15). 

The following rules are applied: 

Rule 1: If the Mismatch value is less than the Perfect Match value, then the 
Mismatch value is considered informative and the intensity value is used directly as 
an estimate of stray signal. 

Rule 2: If the Mismatch probe cells are generally informative across the probe set 
except for a few Mismatches, an adjusted Mismatch value is used for uninformative 
Mismatches based on the biweight mean of the Perfect Match and Mismatch ratio. 

Rule 3: If the Mismatch probe cells are generally uninformative, the uninformative 
Mismatches are replaced with a value that is slightly smaller than the Perfect Match.  

These probe sets are generally called Absent by the Detection algorithm. 
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Figure 15. The grey bars illustrate the Perfect Match (PM) intensities and black 
bars the Mismatch (MM) intensities across a 16-probe pair probe set. 
The white bars, Idealized Mismatch (IM), are the intensities of the 
Mismatch based on the Signal rules. In this example, most of the 
Perfect Match intensities are higher than the Mismatch intensities and 
therefore Mismatch values can be used directly (e.g., probe pair 9). 

When the Mismatch is larger than the Perfect Match (e.g., probe pairs 2, 4, and 13) the IM 
value is used instead of the Mismatch. 

Comparison Analysis (Experiment versus Baseline arrays) 
In a Comparison Analysis, two samples, hybridized to two GeneChip® probe arrays of the 
same type, are compared against each other in order to detect and quantify changes in gene 
expression. One array is designated as the baseline and the other as an experiment. The 
analysis compares the difference values (PM-MM) of each probe pair in the baseline array to 
its matching probe pair on the experiment array. Two sets of algorithms are used to generate 
change significance and change quantity metrics for every probe set. A change algorithm 
generates a Change p-value and an associated Change. A second algorithm produces a 
quantitative estimate of the change in gene expression in the form of Signal Log Ratio. 

Figure 16 illustrates the output of Comparison Analysis in GeneChip® Operating Software 
(GCOS). 
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Figure 16. Data analysis output (.chp file) for a Comparison Analysis includes 
Stat Common Pairs, Signal Log Ratio, Signal Log Ratio Low, Signal 
Log Ratio High, Change, and the Change p-value. 

Before comparing two arrays, scaling or normalization methods must be applied. Scaling and 
normalization correct for variations between two arrays. Two primary sources of variation in 
array experiments are biological and technical differences. Biological differences may arise 
from many sources, such as genetic background, growth conditions, dissection, time, weight, 
sex, age, and replication. Technical variation can be due to experimental variables such as 
quality and quantity of target hybridized, reagents, stain, and handling error. The 
minimization of variation is essential, but scaling and normalization techniques provide a 
means to remove differences and facilitate comparison analysis. 

Normalization and scaling techniques can be applied by using data from a selected user-
defined group of probe sets, or from all probe sets. When normalization is applied, the 
intensity of the probe sets (or selected probe sets) from the experiment array are normalized 
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to the intensity of the probe sets (or selected probe sets) on the baseline array. When scaling 
is applied, the intensity of the probe sets (or selected probe sets) from the experimental array 
and that from the baseline array are scaled to a user-defined target intensity. In general, 
global scaling (scaling to all probe sets) is the preferred method when comparing two arrays. 

An additional normalization factor is defined in the Robust Normalization section described 
below. This ‘robust normalization,’ which is not user-modifiable, accounts for unique probe 
set characteristics due to sequence-dependent factors, such as affinity of the target to the 
probe and linearity of hybridization of each probe pair in the probe set. 

Change Algorithm 
As in the Single Array Analysis, the Wilcoxon’s Signed Rank test is used in Comparison 
Analysis to derive biologically meaningful results from the raw probe cell intensities on 
expression arrays. During a Comparison Analysis, each probe set on the experiment array is 
compared to its counterpart on the baseline array, and a Change p-value is calculated 
indicating an increase, decrease, or no change in gene expression. User-defined cut-offs 
(gammas) are applied to generate discrete Change calls (Increase, Marginal Increase, No 
Change, Marginal Decrease, or Decrease). 

Robust Normalization 
After scaling or normalization of the array (discussed in the Comparison Analysis overview), 
a further robust normalization of the probe set is calculated. Once the initial probe set 
normalization factor is determined, two additional normalization factors are calculated that 
are slightly higher and slightly lower than the original. The range by which the normalization 
factor is adjusted up and down is specified by a user-modified parameter called perturbation. 
This supplementary normalization accounts for unique probe set characteristics due to 
sequence dependent factors, such as affinity and linearity. More specifically, this approach 
addresses the inevitable error of using an average intensity of the majority of probes (or 
selected probes) on the array as the normalization factor for every probe set on the array. 
The noise from this error, if unattenuated, would result in many false positives in expression 
level changes between the two arrays being compared. The perturbation value directly affects 
the subsequent p-value calculation. Of the p-values that result from applying the calculated 
normalization factor and its two perturbed variants, the one that is most conservative is used 
to estimate whether any change in level is justified by the data. The lowest value for 
perturbation is 1.00, indicating no perturbation. The highest perturbation value allowed is set 
at 1.49. Increasing the perturbation value increases the conservativeness of the change call. 
For example, changes that were called Increase with a smaller perturbation value may be 
called No Change with a higher perturbation value. A default was established at 1.1 based on 
calls made from the Latin Square data set. The perturbation factor and the Latin Square data 
set are described in more detail in the Affymetrix Technical Notes referenced in the back of 
this guide. 

Change p-value 
The Wilcoxon’s Signed Rank test uses the differences between Perfect Match and Mismatch 
intensities, as well as the differences between Perfect Match intensities and background to 
compute each Change p-value. 
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From Wilcoxon’s Signed Rank test, a total of three, one-sided p-values are computed for 
each probe set. The most conservative value is chosen to determine the change call.  That is 
the value that is closest to 0.5 which signifies that no change is detected.  These are 
combined to give one final p-value which is provided in the data analysis output (.chp file). 
The p-value ranges in scale from 0.0 to 1.0 and provides a measure of the likelihood of 
change and direction. Values close to 0.0 indicate likelihood for an increase in transcript 
expression level in the experiment array compared to the baseline, whereas values close to 
1.0 indicate likelihood for a decrease in transcript expression level. Values near 0.5 indicate a 
weak likelihood for change in either direction (see Figure 17). Hence, the p-value scale is 
used to generate discrete change calls using thresholds. These thresholds will be described in 
the Change Call section. 

 
Figure 17. Data analysis output (.chp file) for a Comparison Analysis illustrating 

Change p-values with the associated Increase (I) or Decrease (D) call. 
Increase calls have Change p-values closer to zero and Decrease calls 
have Change p-values closer to one. 
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Tunable Parameter Tip:  Increasing the perturbation value can reduce the number of 
false changes, but may also decrease the detection of true changes. Note: Changing 
perturbation factor affects the calculation of the p-value directly. 

Change Call 
The final Change p-value described above is categorized by cutoff values called gamma1 (γ1) 
and gamma2 (γ2) (see Figure 18). These cut-offs provide boundaries for the Change calls: 
Increase (I), Marginal Increase (MI), No Change (NC), Marginal Decrease (MD), or 
Decrease (D). 

The user does not directly set α1 and α2; rather each is derived from two user-adjustable 
parameters, γL and γH. In the case of γ1, the two user-adjustable parameters are called γ1L 
and γ1H (defaults for probe sets with 15-20 probe pairs: γ1L= 0.0025 and γ1H= 0.0025), 
which define the lower and upper boundaries for γ1. Gamma2 (γ2) is computed as a linear 
interpolation of γ2L and γ2H (defaults for probe sets with 15-20 probe pairs: γ2L= 0.003 and 
γ2H= 0.003) in an analogous fashion. 

The ability to adjust the stringency of calls associated with high and low signal ranges 
independently makes it possible to compensate for effects that influence calls based on low 
and high signals. This feature, however, is not used by default because the defaults are set as 
γ1L = γ1H and γ2L = γ2H 

It is important to note that, like in Detection p-value calculation, the level of photomultiplier 
saturation for each probe pair is evaluated. In the computation of Change p-value, any 
saturated probe cell, either in the Perfect Match or Mismatch, is rejected from analysis. The 
number of discarded cells can be determined from the Stat Common Pairs parameter. 

In summary, the Change algorithm assesses probe pair saturation, calculates a Change p-
value, and assigns an Increase, Marginal Increase, No Change, Marginal Decrease, or 
Decrease call. 

 
Figure 18. A representation of a range of p-values for a data set. The Y-axis is the 

probe set signal. The arrows on the vertical bars represent the 
adjustable γ values. The γ1 value is a linear interpolation of γ1L and γ1H. 
Similarly γ2 is derived from γ2L and γ2H. 
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Signal Log Ratio Algorithm 
The Signal Log Ratio estimates the magnitude and direction of change of a transcript when 
two arrays are compared (experiment versus baseline). It is calculated by comparing each 
probe pair on the experiment array to the corresponding probe pair on the baseline array. 
This strategy cancels out differences due to different probe binding coefficients and is, 
therefore, more accurate than a single array analysis. 

As with Signal, this number is computed using a one-step Tukey’s Biweight method by 
taking a mean of the log ratios of probe pair intensities across the two arrays. This approach 
helps to cancel out differences in individual probe intensities, since ratios are derived at the 
probe level, before computing the Signal Log Ratio. The log scale used is base 2, making it 
intuitive to interpret the Signal Log Ratios in terms of multiples of two. Thus, a Signal Log 
Ratio of 1.0 indicates an increase of the transcript level by 2 fold and -1.0 indicates a 
decrease by 2 fold. A Signal Log Ratio of zero would indicate no change. 

The Tukey’s Biweight method gives an estimate of the amount of variation in the data, 
exactly as standard deviation measures the amount of variation for an average. From the 
scale of variation of the data, confidence intervals are generated measuring the amount of 
variation in the biweight estimate. A 95% confidence interval indicates a range of values, 
which will contain the true value 95% of the time. Small confidence intervals indicate that 
the data are more precise while large confidence intervals reflect uncertainty in estimating the 
true value. For example, the Signal Log Ratio for some transcripts may be measured as 1.0, 
with a range of 0.5 to 1.5 from low to high. For 95% of transcripts with such results, the true 
Signal Log Ratio will lie somewhere in that range. A set of noisy experiments might also 
report a Signal Log Ratio of 1.0, but with a range of -0.5 to 2.5, indicating that the true effect 
could easily be zero, since the uncertainty in the data is very large. The confidence intervals 
associated with Signal Log Ratio are calculated from the variation between probes, which 
may not reflect the full extent of experimental variation. 

Terminology Comparison Table  
(Statistical Algorithms versus Empirical Algorithms) 

Statistical Algorithms Empirical Algorithms 

Signal Average Difference 

Detection Absolute Call 

Change Difference Call 

Signal Log Ratio Fold Change 

The Logic of Logs 
Quantitative changes in gene expression are reported as a Signal Log Ratio in the Statistical 
Algorithms as opposed to a Fold Change that was reported in the Empirical Algorithms. 

The Benefit of Logs: 
Hybridized probe intensities tend to be distributed over exponential space due to 
hybridization behavior that is governed by exponential functions of sequence-dependent 
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base-pairing energetics. Thus, log transformation is an appropriate process for analyzing 
hybridization data. Some of the benefits are apparent in Figure 19, where the same data set is 
plotted on two scales. When the data are plotted on a linear scale (solid) the single, high data 
point (7) overwhelms the graph and obscures information contained in the low values. When 
the same data are plotted on a Log2 scale (dashed line), variations in the low values, as well as 
the very high values, are shown. 
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Figure 19. Illustration of the benefit of using logs.   Variations in the high and low 

values are shown when data are plotted on a Log2 scale. 

Signal Log Ratio vs. Fold Change 
Signal Log Ratio is compared to Fold Change in a hypothetical experiment in Figure 20. 
Baseline values were set to 1.5 and experiment values were reduced progressively from 6 to 
0.375. 

The X-axis illustrates the values that were decreased in the hypothetical experiment. The Y-
axis represents units (e.g., Signal Log Ratio, Fold Change, or Signal for baseline and 
experiment).  



DATA ANALYSIS FUNDAMENTALS 

Page 53 

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

6.0 4.9 4.0 3.2 2.6 2.1 1.7 1.5 1.2 1.0 0.8 0.7 0.5 0.4

Log-ratio Fold-change Baseline Experiment

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

6.0 4.9 4.0 3.2 2.6 2.1 1.7 1.5 1.2 1.0 0.8 0.7 0.5 0.4

Fold Change

Baseline

Experiment

Log-ratio

 
Figure 20.  

There is a discontinuous transition where the experiment and the baseline converge and the 
fold change approaches 1 or -1. At this point (smaller changes), the fold change is less 
sensitive. Since we use log2, a Signal Log Ratio of 1 equals a Fold Change of 2 and a Signal 
Log Ratio of 2 equals a Fold Change of 4. Alternatively, use the following formula:  

    2 Signal Log Ratio   Signal Log Ratio > 0 

Fold Change =  
(-1) * 2 -(Signal Log Ratio)  Signal Log Ratio < 0 

Basic Data Interpretation 
The use of GeneChip® probe arrays allows interrogation of tens of thousands of transcripts 
simultaneously. One of the formidable challenges of this assay is to manage and interpret 
large data sets. This chapter provides users with guidelines for determining the most robust 
changes from a comparison analysis.  

Metrics for Analysis 
Which data analysis metrics should be used to determine the most significant transcripts 
when comparing an experimental sample to a baseline sample? GCOS provides users with 
both qualitative and quantitative measures of transcript performance. One standardized 
approach for sorting gene expression data involves the following metrics: 
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• Detection 
• Change 
• Signal Log Ratio 

Detection is the qualitative measure of presence or absence for a particular transcript. A 
fundamental criterion for significance is the correlation of the Detection calls for a particular 
transcript between samples. When looking for robust increases, it is important to select for 
transcripts that are called “Present” in the experimental sample. When determining robust 
decreases, it is important to select for “Present” transcripts in the baseline sample. By 
following these initial guidelines, you will eliminate “Absent” to “Absent” changes, which 
are uninformative. 

Change is the qualitative measure of increase or decrease for a particular transcript. When 
looking for both significant increases and decreases, it is important to eliminate “No 
Change” calls. 

Signal Log Ratio is the quantitative measure of the relative change in transcript abundance. 
The Affymetrix Gene Expression Assay has been shown to identify Fold Changes of two or 
greater 98% of the time by Wodicka et al. in 1997 (15). Based on these observations, robust 
changes can be consistently identified by selecting transcripts with a Fold Change of >2 for 
increases and <2 for decreases. This corresponds to a Signal Log Ratio of 1 and -1, 
respectively. These value guidelines apply when performing a single comparison analysis. 

NOTE: Please refer to “Introduction to Replicates” below in this chapter for exceptions. 

Interpretation of Metrics 
When sorting through gene expression data in GCOS, you will notice that some transcripts 
provide conflicting information. Here are some examples: 

1. A transcript is called “Increase” but has a Signal Log Ratio of less than 1.0. 

2. A transcript is called “No Change” but has a Signal Log Ratio of greater than 1.0. 

3. A transcript is called “Absent” in both experimental and baseline files but is also 
called “Increase.” 

These contradictions arise due to the fact that Detection, Change, and Signal Log Ratio are 
calculated separately. The benefit of this approach is that transcripts can be assessed using 
three independent metrics. 

Thus, in order to determine the most robust changes, it is crucial to use all three metrics in 
conjunction. The following section outlines this process. 

Sorting for Robust Changes  
Basic steps for determining robust increases: 

1. Eliminate probe sets in the experimental sample called “Absent.” 

2. Select for probe sets called “Increase.”* 

3. Eliminate probe sets with a Signal Log Ratio of below 1.0. 

Basic steps for determining robust decreases: 
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1. Eliminate probe sets in the baseline sample called “Absent.” 

2. Select for probe sets called “Decrease.”* 

3. Eliminate probe sets with a Signal Log Ratio of above -1.0. 

NOTE: For detailed sorting instructions, please refer to “Performing Comparison 
Analysis” in Chapter 4. 

* For those who wish to relax the Change criterion, include “Marginal Increase” and 
“Marginal Decrease” during selection. 

“Real” Changes vs. “False” Changes 
The procedures listed above can be used to determine both “Real” and “False” changes. The 
difference between “Real” and “False” changes lies in the relationship between the samples 
being compared. If the samples are different (e.g., normal vs. diseased, control vs. treated, 
etc.), the procedures will highlight transcripts that change significantly from the baseline 
sample to the experimental sample. If the samples are identical (i.e., hybridization replicates), 
no changes are expected. Thus, any transcripts showing significant change are false changes. 

Note on Signal Log Ratio 
When applying the sorting functions on Signal Log Ratio in GCOS (i.e., “Sort Ascending” 
and “Sort Descending”), you will notice that the column sorts on the magnitude of the 
Signal Log Ratio value, and not on the sign. Keep this in mind when sorting for robust 
changes. 

Introduction to Replicates 
The guidelines outlined in “Sorting for Robust Changes” above apply to a single comparison 
analysis. However, when biological replicates are introduced and multiple comparisons are 
generated, it becomes possible to relax the sorting thresholds based on consensus. 

For example, here is an experiment with two sets of replicate samples consisting of two 
control samples (A and B) and two experimental samples (Y and Z). Performing pair-wise 
comparisons results in the following matrix: 

A             Y 

 

B             Z 
This set of four analyses (A to Y, B to Y, A to Z, and B to Z) are comparison replicates. 
Each transcript has essentially been interrogated four times. The following is a hypothetical 
set of metrics for one transcript to determine whether or not it has increased: 
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Comparison Detection in Exp. Change in Exp. Signal Log Ratio

A to Y A I 1.3 

B to Y P I 1.2 

A to Z P I 0.9 

B to Z P I 1.2 

* Note: “Exp.” refers to the experimental sample. 

Following the change guidelines for a single comparison analysis, the “Absent” call in the “A 
to Y” comparison would throw out this transcript. Likewise, the 0.9 Signal Log Ratio value 
would throw out the transcript in the “A to Z” comparison. 

Overall, the transcript appears to be increasing since two of the four comparisons meet all 
three conditions for determining robust change and the other two comparisons meet two 
out of the three conditions. Based on overall consensus, we may choose to accept this 
transcript as a robust change. 

The number of replicates to utilize and the conditions for acceptance of change are variable 
and up to the discretion of the user. However, the benefit of replicates in gene expression 
data (as with other assay data) is clear. 

More advanced data analysis can be carried out in advanced data mining software. 
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Chapter 6  Statistical Analysis 
In this section the intent is to help researchers establish a general understanding of which 
statistical methods may be used for advanced analysis of gene expression data. We recognize 
that there are a number of novel and very complex tests that are available or are being 
developed for analysis of large data sets, such as microarray data. However, the statistics 
subsequently discussed are available in common statistical software and are sufficiently 
robust to accurately determine statistical significance. As this is an overview, we suggest you 
consult one of the many statistical textbooks for the finer points of biostatistics (7).  

A common early step in microarray data analysis is log transformation. Typically, log base 10 
is used; however, log base 2 or natural log will work equally well. Log transformation has 
several important effects on the data (8). The most critical reason to log transform 
microarray data is that some of the error in the signal intensity measurement increases as the 
magnitude of signal intensity increases. That is, small numbers have less error in an absolute 
sense than higher numbers. Fortunately, higher numbers have roughly the same percentage 
error as small numbers. This roughly constant factor can be simply calculated and subtracted 
to normalize the data once the signals have been log transformed. There are additional 
effects of logging that make log transformed microarray data more closely fit statistical 
assumptions when applying statistical test methods. Log transformation makes data more 
symmetrical, one of the standard assumptions of normality. Log transformation also reduces 
the influence of a single measurement. Means on a log scale are more like geometric means, 
which are resistant to the effects of outliers, and it follows that outliers result in better 
estimates of variance. So, by log transforming data, common statistical methods are made 
more reasonable and provide more accurate insights to the biologist. 

The key to using statistics when analyzing data is to determine which test is most appropriate 
to use, which in part is determined by the experimental design. Most common statistical 
methods fall into one of two categories. The first category, parametric statistics, uses the 
numerical data, such as the arithmetic mean, standard deviation, etc., to determine significant 
differences between sets of data. To utilize these statistical tests, assumptions regarding the 
normal distribution of the data, equality of variance among the groups, and general 
population normalcy must be made. These assumptions are often sufficiently satisfied to 
make parametric statistics extremely useful and a viable starting point for analysis. However, 
if data are generated from populations that do not meet these assumptions, these methods 
become unreliable because the mean and variance will no longer completely describe the 
population. This is a critical point, as parametric statistical methods essentially test for the 
degree of overlap of the population variance and determine the chance occurrence of this 
overlap when comparing differences between populations. Skewing of the data from non-
normal variances will thus lead to false conclusions regarding the data set. 

There are numerous statistical tests that can estimate if a population follows a normally 
distributed pattern. Unfortunately, these tests can be quite elaborate and are not robust 
enough to provide unambiguous conclusions. A simple method for examining the 
distribution of data is to compare the mean and median values. The mean is simply the sum 
of the data points within a group divided by the number of members in that group. The 
median is the data point that lies directly in the middle of all of the values. In other words, 
there are an equal number of data points on each side of this central value (i.e., the median 
value falls on the 50th percentile of the data set). 
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In a normally distributed population, roughly 67% of the data fall within one standard 
deviation from the mean. In this same group, 95% of the data should fall within two 
standard deviations of the mean. If the same population is examined using the median, then 
the number of data points found within the 16th percentile and 84th percentile should be 
close to 67%. It should also be expected that 95% of the data points will fall between the 
2.5th percentile and 97.5th percentile. Thus, if a sample population does follow a normal 
distribution, the mean and median should be of similar values with the data having a similar 
distribution around these values. 

 

 
Figure 21. Image of a standard Gaussian curve. 

When assessing if a population follows a normal distribution, the data should form a graph 
with the following characteristics. 

• The graph should have a single peak at the center, which occurs at µ (the mean).  
• The graph should be symmetrical. 
• The graph should continue along the horizontal axis to infinity.  
• The area under the graph should always equal one. 
• Approximately 68% of the data should lie within one standard deviation (y) from 

the mean, 95% should lie within two standard deviations (2y), and 99.7% should 
lie within three standard deviations (3y).  

Parametric statistics test the hypothesis that one or more treatments have no effect on the 
mean and variance of a chosen variable. As mentioned earlier, these tests are based on the 
assumption that the data are taken from a normally distributed population. However, 
experiments often yield data that are not consistent with these assumptions of data 
normality. In these cases, objects can also be tested in an ordinal, rather than an interval, 



DATA ANALYSIS FUNDAMENTALS 

Page 59 

scale using a second, non-parametric approach that uses ranks of numerical data rather than 
the data themselves. This technique uses information about the relative sizes of observations 
without making any assumptions about the means and variances of the populations being 
tested and, thus, non-parametric methods can be used for analysis of any data set. However, 
if the data are normally distributed, then the parametric methods will be more powerful, that 
is, detect more data of significance.  

In the following section, we review a series of statistical tests that can be used when 
analyzing GeneChip®  array data. Note that the choice of tests to be used is highly 
dependent on experimental design. We highly encourage users of GeneChip expression 
arrays to plan experiments carefully to maximize the power of these tests for their projects.  

Two Sample Statistical Tests 

T-test 
Student’s t-test, often known as a simple t-test, is likely the most commonly used parametric 
statistical test. The t-test assesses whether the means of two groups are statistically different 
from each other. This statistic accomplishes this task by examining the differences between 
the means relative to the spread, or variance, of the data. The formula for the t-test consists 
of determining the ratio of the difference between the two means and the measure of the 
variability between the two data sets. 

To test for significance, a risk level needs to be established; that is, a rate for acceptable false 
error. In most scientific research, this level is set at 0.05. This is considered to be the 
statistical determination of true differences between the two conditions tested, with a chance 
of being incorrect one in 20 times (a Type I error). The degrees of freedom are directly 
related to the number of data points and are determined by the experimental design. In the  
t-test, the degrees of freedom are the sum of the samples in both groups minus 2. Given the 
predetermined level of significance and the degrees of freedom, a t-value can be looked up in 
a standard table to determine whether it is large enough to be significant. If it is, you can 
conclude that the difference between the means for the genes in the two groups is different 
(even given the variability) with a set probability of false acceptance. 

There are two basic versions of the t-test—the unpaired t-test (see Example 1 below) and 
the paired t-test (see Example 2 below)—where the data points in both groups are from two 
separate experimental populations. A typical experiment would be if we were comparing 
expression patterns of genes in two groups of patients. This is an example requiring the 
unpaired t-test, which is more common in most experiments involving expression data. 
Unpaired t-tests also have the advantage that the data do not require the two groups to be 
the same size. 

It is possible that an experiment could be designed to examine the effect of an experimental 
maneuver in a single individual. An example would be measuring expression patterns of a 
particular gene within a single tissue sample before and after a treatment with a drug. In this 
case, the paired t-test would be the correct technique to use. A paired t-test is very powerful 
in that it compares the exact data point (e.g., a gene) between the two treatments within an 
experiment, and so, variations in baseline and experimental values between experiments are 
mitigated. It should be noted that this test should be used only in cases where the sample 
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population is truly paired and not in some of the more ambiguous scenarios (cell lines in the 
same passage, for example). 

Example 1 -- Unpaired T-test 
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In the following example, the signal values for probe set X from 12 arrays are given (n1 =6 
control and n2 = 6 experimental). The unpaired t-test divides the difference between the 
means by the square root of their pooled variance. It is then determined at what level of 
significance the resulting t score falls. 

 

 Control Group Experimental Group 

Signal R1 3700 4900 

Signal R2 4000 5200 

Signal R3 4200 4900 

Signal R4 3900 5000 

Signal R5 4100 4800 

Signal R6 4000 4750 

 

Mean1 = 3983 Sum of Squares 1 = 148334 v1 = 5 

Mean2 = 4925 Sum of Squares 2 = 128750 v2 = 5 
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70.6
63.140
49253983

−=
−

=t  

:Horeject  then 2.228 6.7 as  228.210,05.0 >=t  

P < 0.0001. The two means are not the same. 

A low p-value for this test (less than 0.05 for example) means that there is evidence that the 
difference in the two means are statistically significant.  If the p-value associated with the t-
test is small (< 0.05), there is evidence that the means are significantly different at the 
significance level reported by the p-value. If the p-value associated with the t-test is not small 
(> 0.05) you conclude that there is evidence that the means are not different. 

Example 2 -- Paired T-test 
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In the following example, the signal values for probe set X from 10 arrays are given (n1 =5 
control and n2 = 5 experimental). The paired t-test divides the differences between the 
means by the Standard Error of the differences between the means. The Standard Error is 
the product of the standard deviation of each pair’s differences divided by the square root of 
the number of pairs. The level of significance between which the resulting t score falls is 
then determined. 
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 Before Treatment After Treatment 

Signal R1 3700 4900 

Signal R2 4000 5200 

Signal R3 4200 4900 

Signal R4 3900 5000 

Signal R5 4100 4800 

Signal R6 4000 4750 

 

Mean1 = 3983  v1 = 5 

Mean2 = 4925 v2 = 5 

( )
61.45065.228

5
21 ==

− ddSE
 

65.20
61.45
67.941

==t  

:Horeject  then 2.228  20.65 as  228.210,05.0 >=t  

P < 0.0001. The differences between the means is greater than 0.  If the p-value associated 
with t is low (< 0.05), then there is a difference in means across the paired observations.  

Mann-Whitney Test for Independent Samples 
This test is used in place of a two-sample, unpaired t-test when the data sets being compared 
are not normally distributed (see Example 3 below). This test derives its robustness under 
this condition from the fact that it does not use calculation of variance as part of the 
hypothesis test, but, rather, relies on rankings of the numerical values. It requires random 
samples of sizes n1 and n2 from two completely independent groups. The test then consists 
of combining the two samples into one sample of size n1 + n2. The actual observations 
taken from the data are replaced with their ranks. For example, in a data set with 10 (5 
control and 5 experimental) samples, the highest ranking point would receive a value of 10 
and the lowest a value of 1. In case of a tie, the values are given the average of the two ranks. 
A sum of the ranks for each group is then calculated. Continuing with our 10-sample 
scenario, if the values of the 5 samples from set one were all greater than those from set two, 
the values of the sums from set one would be 40, and set two, 15. Conversely, if the two 
data sets have the same distribution, then the sum of the ranks of both groups should be 
close to the same value. A p-value for the null hypothesis that the two distributions are the 
same can then be generated. 

Example 3 -- Mann-Whitney Test 
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n1 = # of individuals in group 1 

 

R1 = sum of the ranks for group 1 

In the following example, the signal values for probe set X from 11 arrays are given (6 
control and 5 experimental). The Mann-Whitney ranks the combined data set of unpaired 
members based upon their absolute values. The ranks are separated back to their respective 
groups and the resulting sums of ranks are then examined using the Mann-Whitney statistic. 
The resulting level of significance is then reported. 

 

 

n1 = 6; n2 = 5; N = 11; R1 = 22; R2 = 44 

Ranks of N are assigned in either lowest to highest or vice-versa. 
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Critical values = 5 and 6 

P 0.05 = 23 as 29 > 23 then reject Ho: 

P = 0.01. The two groups are not the same. 

If the p-value is low, chances are there will be little overlap between the two distributions.  If 
the p-value is not low, there will be a fair amount of overlap between the two groups. 

 Control Group Experiment 
Group 

Control Rank Experiment 
Rank 

Signal R1 4500 3700 7 9 

Signal R2 5200 3300 2 11 

Signal R3 4700 4600 4 6 

Signal R4 5500 3500 1 10 

Signal R5 5000 3900 3 8 

Signal R6 4650  2  
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The Wilcoxon Signed-Rank Test for Paired Data 
A test similar to the Mann-Whitney, the Wilcoxon Signed-Rank Test is used when each 
experimental subject is observed before and after a single treatment, that is, it is the non-
parametric alternative to the paired t-test (see Example 4 below). This statistic consists of 
sorting the absolute values of the differences from smallest to largest, then assigning ranks to 
the absolute values regardless of sign. The sum of the ranks of the positive differences is 
next determined. As with the Mann-Whitney, the distribution of all possible values of the 
test statistic can be obtained in which the treatment has no effect. If the null hypothesis is 
true, the sum of the ranks of the positive differences should be similar to the sum of the 
ranks of the negative differences. However, if the test statistic value falls outside of this 
range, the null hypothesis can be rejected indicating that the treatment did indeed have some 
effect. 

Example 4 -- Wilcoxon Signed-Rank Test 
W + the value of the signed ranks 

In the following example, the signal values for probe set X from 12 arrays are given. (6 
control and 6 experimental). The Wilcoxon Signed-Rank Test ranks the absolute values of 
the difference between each pair. If the difference between a pair is equal to 0, then that 
value is not used any further. Also, if the difference is identical between two pairs, the 
average rank of the two groups is used. The Sum of the ranks is then calculated and 
compared to the appropriate critical values and levels of significance found in a Wilcoxon 
table. 

 

 Control Experimental Difference Ranks 

Signal R1 4500 3700 800 4 

Signal R2 3200 3300 -100 -1.5   

Signal R3 4700 4600 100 1.5 

Signal R4 5500 3500 2000 6 

Signal R5 5000 3900 1100 5 

Signal R6 4250 4400 -150 -3 

 

W = 12; n = 6 

The critical values for n = 6 and α = 0.063 are 1 and 20. These can be found in almost any 
basic level statistics manual. Since 1 < 12 < 20 we would accept the null hypothesis that the 
Control Group and Experimental Group are not significantly different. 
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Multivariate Statistics 

One-Way Analysis of Variance 
Analysis of Variance (ANOVA) is one of the most commonly used multivariate statistics. 
Essentially, an ANOVA employs multiple estimates of a population’s variance to determine 
the overall variability within a multiple-group analysis (see Example 5 below). There is no 
restriction on the number of groups that can be analyzed by ANOVA, and it is equally valid 
for testing differences between two groups or among 20. In the special case where there are 
only two groups, ANOVA is equivalent to the t-test. Since it is also a parametric test, it has 
the same limitations as the t-test: the observations must follow a normal distribution, the 
variance in the groups must be equal, and the data points in each group must be from 
independent samples. 

With ANOVA, there are, in fact, two estimates of variance for each group taken. The first 
estimate of variance is based upon the standard deviation of each group. This variance is not 
affected by any differences in the means of the groups being tested since this information is 
generated within each group. Also, the variance should not differ, as this test makes the 
assumption of equal variance among groups. The second population variance estimate is 
based upon the variability between means of each group. If these estimates of each group’s 
variability are the same, then it is expected that the overall variance among the groups is not 
different. However, if there are significant differences between the means, then this will 
obviously lead to the possibility of a changing population variance estimate.  

Once these calculations have been determined, the ANOVA requires that the population 
variance estimate of the means be divided by the population variance estimate of the 
standard deviations. Depending on the size of the resulting test statistic, a p-value is 
generated and can be used to determine significance. 

At its simplest, a one-way ANOVA can be used to test the hypothesis that some variable of 
interest differs among groups. There are more sophisticated versions of ANOVA, (see 
below for descriptions): two-way ANOVA can test for differences among groups while 
controlling for other categorical variables, and ANCOVA (analysis of covariance) can 
control for continuous variables, both of which are described below. 

Example 5 -- One-Way Analysis of Variance (One-Way ANOVA) 
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In the following example, the signal values for probe set X from 18 arrays are given (6 
controls, 6 with disease, and 6 disease + drug). The one-way ANOVA tests whether the 
means of more than two groups are equal. The one-way ANOVA examines the variation 
among the sample means by way of a measurement of the weighted average of the squared 
deviations around the mean of all of the sample data (MSTR – Treatment Mean Square). 
This value is derived from the sum of each group divided by the total number of replicates 
for each group. The sum of squares for each data point divided by the total number of arrays 
is then subtracted. Lastly, this value is once again divided by the number of classes minus 
one. This estimate of variance among groups is then divided by the variation within each 
group (MSE – Error Mean Square).  This is found in two steps. The first is by calculating the 
variance within each group and multiplying it by the number of replicates in each group 
minus one. The second step involves dividing the preceding value by the number of arrays 
minus the number of classes. The resulting F-value can be compared to the F table using the 
number of classes minus one as one degree of freedom, and the total number of arrays 
minus the number of classes as the other. 

 

 Control Disease Disease + Drug 

Replicate 1 800 700 750 

Replicate 2 750 690 720 

Replicate 3 845 800 870 

Replicate 4 795 650 815 

Replicate 5 820 780 795 

Replicate 6 900 750 850 

Sum 4910 4370 4800 
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At the p-value = 0.05 level and degrees of freedom (2, 15) the critical value of F is 3.68. 
Therefore, 4.41 > 3.68 so we would reject that the groups are equal. 

Two-Way Analysis of Variance 
In a one-way ANOVA, the effects of various levels or treatment conditions of one 
independent variable on a dependent variable are examined. That is, we are investigating 
changes between multiple treatment conditions. Many experimental designs can be 
established to test the effect that two variables may have on a data set. For example, we may 
examine normal vs. tumor tissues, along with the effect of two different drugs, making a 
total of four different sample sets. If this investigation uses male and female subjects, then a 
two-way ANOVA can be used to investigate differences in gene expression between the 
different conditions, as well as male/female differences within and between each condition 
(see Example 6 below). In this case, two separate ANOVAs cannot adequately examine the 
possible interactions that can be generated between the two variables, and, so, a two-way 
analysis of variance is the best methodology. A two-way ANOVA consists of three 
significance tests: a test of each of the two main effects and a test of the interaction of the 
variables. 

Example 6 -- Two-Way Analysis of Variance (Two-Way ANOVA) 
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m = # of blocks 

k = # of classes 

n = (k)(M) = total # of pieces of data 
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X = mean for all groups 

 

A Two-Way Analysis of Variance is designed to test whether the variance among several 
groups is the same and is similar in concept to the one-way ANOVA. The major difference 
is that a large portion of the variation within the groups can be due to a single extraneous 
variable which first needs to be mathematically isolated and removed so that it will be easier 
to detect true differences among the groups.  

In the following example, the signal values for probe set X from 18 arrays are given (6 Drug 
A, 6 Drug B, and 6 Drug C). The goal of the test is to compare the three drugs for their 
impact on expression for this probe set. The variability associated with the Individuals will 
be compensated for, as it will have a major effect on the overall variability within each 
system. The two-way ANOVA examines the variation among the sample means by way of a 
measurement of the weighted average of the squared deviations around the mean of all of 
the sample data (MSTR – Treatment Mean Square). This value is derived from the total sum 
of squares for each group divided by the total number of replicates for each group. 
However, this value is now described by three components (instead of just two for the one-
way ANOVA). The third calculation involves the sum of squares for the extraneous variable 
as well. The sum of squares for each data point divided by the total number of arrays is then 
subtracted. Lastly, this value is once again divided by the number of classes minus one.  

This estimate of variance among groups is then divided by the variation within each group 
(MSE – Error Mean Square). In this case, the sum of squares for the extraneous variable is 
also addressed. The resulting F-value can be compared to the F table using the number of 
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classes minus one as one degree of freedom, and the total number of arrays minus the 
number of classes, minus the number of blocks, plus 1 as the other. 

 Drug A Drug B Drug C Sum of Blocks 

Individual 1 500 650 800 1950 

Individual 2 625 700 750 2075 

Individual 3 575 675 675 1925 

Individual 4 600 685 795 2080 

Individual 5 595 645 725 1965 

Individual 6 565 650 695 1910 

Sum of 
Treatments 

3460 4005 4440 11905 
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At the p-value = 0.05 level and degrees of freedom (2, 10) the critical value of F is 4.10. 
Therefore, 25.68 > 4.10 so we would reject that the groups are equal. 

Kruskal-Wallis 
The Kruskal-Wallis (see Example 7 below) is the non-parametric equivalent to an ANOVA. 
It is equally valid for testing differences between two groups or among 20. In the special case 
where there are only two groups, the Kruskal-Wallis is equivalent to the Mann-Whitney. 
Because the Kruskal-Wallis test is non-parametric, there are no assumptions that need to be 
made regarding the distribution of the observations. All observations are ranked without 
regard for the group in which they are found. After the sums of each group’s observations 
are calculated, the distributions of the ranks are then compared. 

As with the ANOVA, the Kruskal-Wallis is a statistic that examines overall variation among 
the groups. It does not offer information about which groups are significantly different. To 
determine these specifics, it is necessary to run multiple pair-wise comparisons. 
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Example 7 -- Kruskal-Wallis 
 

( ) ( )
( )
12

1
....... 22

11

+
−−

=
NN

xxnxxn
H kk  

 

n1.......nk = # of individuals in each group 

 

ranks sgroup'each  ofmean    the.......1 =kxx  

 

X = the mean of all groups’ ranks 

 

N = total # of individuals in all groups 

 

( ) ( ) ranks of sdifference squared of sum....... 22
11 ==−− SSDxxnxxn kk  

 

In the following example, the signal values for probe set X from 15 arrays are given (5 group 
1, 5 group 2, and 5 group 3). The Kruskal-Wallis tests whether or not the ranks of more than 
two groups are equal. It accomplishes this by first ranking each observation regardless of 
group. Then the Kruskal-Wallis statistic (H) is calculated by dividing the Sum of Squared 
Differences (SSD) by N(N+1)/12. This is used to generate a measurement that examines 
how the rank of each group compares with the average rank of all the groups. Lastly, the H 
statistic is compared to the Chi-square distribution with k-1 degrees of freedom. If the 
sample size is small, then it may be necessary to use k degrees of freedom to prevent an 
overly conservative estimate. 

 

 

 

 

 

 

 

 

 

 Group 1 Rank Group 2 Rank Group 3 Rank 
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Replicate 1 800 10.5 700 3 750 5.5 

Replicate 2 750 5.5 690 2 720 4 

Replicate 3 845 14 800 10.5 870 15 

Replicate 4 795 8.5 650 1 815 12 

Replicate 5 820 13 780 7 795 8.5 

Sum of 
Ranks 

 51.5  23.5  45 

Mean of 
Ranks 

 10.3  4.7  9 

 

Mean of All Ranks = 8; df = k – 1 = 2 

 

( ) ( ) ( ) 90.7389587.4583.105 222 =−+−+−=SSD  

 

( ) 695.3

12
11515

90.73
=

+
=H  

 

4.605 > 3.695 > 2.773; p-value 0.25 > H > .10 

At the p-value = 0.05 level and with degrees of freedom = 2; the groups are not significantly 
different. 

Mitigating Type I and II Errors 
With any statistical test, the possibility of making an erroneous assumption is always present. 
The reason for having numerous tests that vary, sometimes slightly, in their approach is to 
minimize the likelihood of making an invalid assumption. There are two types of errors that 
are discussed in general statistics. The first of these errors is the false assumption that two 
groups are in fact significantly different (Type I error of false positive). The p-value that is 
generated as a result of the statistical tests used is a direct estimate of the chance that you will 
make an error of this nature. For instance, a p-value of 0.05 indicates that the researcher 
expects to make a Type I error 5% of the time.  

The second type of error (Type II error false negative) deals with the false assumption that 
the null hypothesis is correct. In other words, groups that are significantly different will not 
be identified as such. It is much more difficult to detect errors of this type as the p-value is 
not an indicator. Replication and increased sample size are the most likely methodologies to 
understand this phenomenon. 

Parametric t-tests, like all two-sample analyses, should be used only when testing populations 
comprised of two samples. T-tests are invalid for doing multiple comparisons in a data set 
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(e.g., sample 1 vs. 2, 1 vs. 3, 2 vs. 3), as the population variance is not taken into account 
when performing each individual test. This can easily lead to false acceptance of data. In 
these cases, one of the Analysis of Variance tests should be used (please refer to the 
“Multivariate Statistics” section of this document). 

The following table describes the potential for generating an increase in false positives by 
performing multiple pair-wise comparisons. In the table, k = the number of groups; K = the 
number of comparisons that are necessary; each subsequent column represents the chosen 
level of significance. As multiple comparisons are done, the table shows the actual level of 
significance that is being met. 

k K  p = 0.1 p = 0.05 p = 0.01 p = 0.001 

2 1 0.1 0.05 0.01 0.001 

3 3 0.27 0.14 0.03 0.003 

4 6 0.47 0.26 0.06 0.006 

5 10 0.65 0.4 0.1 0.01 

6 15 0.79 0.54 0.14 0.015 

10 45 0.99 0.9 0.36 0.044 

Multiple Comparison Corrections 
After an ANOVA has been utilized to determine variation among multiple groups, it may be 
necessary to understand which groups are significantly different. As stated above, a strict 
pair-wise analysis using a standard t-test can increase the likelihood of generating a Type I 
error. The reason this occurs is because the level of significance used in each pair-wise test 
(commonly 0.05) is more likely to be met with an increase in the number of pair-wise tests 
used. Therefore, a number of correction statistics have been developed to address this issue. 

Bonferroni Correction 
This correction is a simple modification of the Student’s t-test. In this case, the cut-off level 
of significance being used is divided by the number of means being compared. Therefore, if 
you are using an initial cut-off of 0.05 and there are four groups in your comparison, then to 
use this correction you would divide 0.05 by 4 to get a p-value of 0.0125 cut-off for these 
comparisons. The Bonferroni correction is a conservative correction that works well with a 
small number of data points within a group (generally, n < 8). As the number of data points 
increases, the resulting p-value can become increasingly conservative. For example, if you 
test one gene by PCR on a set of control mice and compare it to a set of treated samples you 
would say that the change is statistically significant if a t-test of the contrasts have a p-value 
of 0.05 or lower. For a microarray experiment you would perform one test for each probe 
set ID on the signals and you would then rank the 12,488 p-values. For 95% confidence you 
divide 0.05 by 12,488 to get 4.0 x 10-6. If any p-value is lower than 4.0 x10-6 it passes the 
Bonferroni multiple correction tests. If all genes fail then simply selecting the percentile with 
the lowest p-values will yield 125 genes in a principled manner.  

Thus, use of the Bonferroni correction for mitigating false error rates in data sets with large 
numbers of tests (i.e., microarray data) will result in highly conservative p-values. However 
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microarray data are not perfectly normally distributed, which means that using a parametric 
test, like Students t or ANOVA, gives better than expected values. In those cases the 
stringency of Bonferroni balances the overly significant result. Furthermore Bonferroni is so 
easily calculated that you should at least look to see if a sufficiently large number of genes 
pass this threshold. Practically speaking, genes that pass the significance thresholds using the 
Bonferroni correction will have a very low false-error rate. Thus, in assessing the data for 
significant results, you can begin with this calculated threshold and empirically relax the 
criteria based on other indications of significance such as fold-change and biological 
significance. 

There are other strategies for mitigation of Type I errors. As stated above, while Bonferroni 
is often too conservative for this purpose, it is easily applied, where other common methods, 
such as Westfall-Young (9), or False Discovery Rate (10), are computational intensive and 
generally require some programming to implement. Bonferroni, and methods like it, 
provides a greater confidence in the results. Microarrays are the unusual statistical case where 
the number of tests greatly exceeds the number of samples, so standard statistical methods 
for multiple comparisons are pushed to their limit. This is why non-statistical approaches 
must be used in conjunction with statistical methods to interpret and validate the biological 
importance of the data. 
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Chapter 7  Biological Interpretation of GeneChip® 
Expression Data 
The last step in the analysis of gene expression data is the biological interpretation of the 
results, where expression profiles contribute to the functional genomics characterization of 
the biological system under investigation. Depending on the goals of the experiment, this 
step allows the testing of specific hypotheses, or the generation of new insights and 
hypotheses, that helps guide further research. Finding the functional relevance of expression 
data requires gathering and organizing a variety of additional bioinformatics associated with 
the sequences that show significant changes. It also involves correlating expression results 
with other types of data that may be gathered as part of the experiment, such as genomic, 
proteomic, or metabolomic data. Such integrative approaches, sometimes termed ‘Systems 
Biology,’ aim to tackle the complexity of biological systems by gathering and incorporating 
all the available information into one comprehensive model. 

The challenges of biological interpretation and the relative paucity of tools available have 
made this step the true bottleneck in microarray data analysis. One fundamental difficulty is 
the requirement for human review and understanding of complex types of data, scattered 
across a variety of sources, including online databases and journal publications. While there 
are efforts to develop tools that would truly automate some of the biological interpretation 
tasks, such as knowledge mining tools and gene network modeling and prediction, most 
investigators rely largely on ‘manual’ interpretation of results, through the review of 
functional annotations, pathway information, and associated literature. Tools that assist in 
these tasks should allow for the efficient mining and organization of annotations, as well as 
presentation of expression data in a functional context, such as within known metabolic or 
signaling pathways. This section will introduce some tools useful for mining and organizing 
annotations, as well as visualizing expression data within functional contexts, in order to 
assist in the biological interpretation of expression data. 

Statistical Significance vs. Biological Relevance 
As discussed in previous sections, a primary utility of significance metrics, such as p-values 
generated by statistical tests, is to rank results by confidence, and help in the estimation of 
false positives (Type I errors) and false negatives (Type II errors). These metrics allow the 
scientist to tune the analysis stringency to achieve the desired balance of sensitivity and 
specificity, resulting in a certain amount of flexibility (and arbitrariness) when interpreting 
significance metrics generated by a given test. As a result, the list of ‘interesting genes’ 
generated from an expression profiling experiment may change as the analysis is refined and 
as additional types of data, such as functional information, are added to the analysis. 

Gene expression changes are controlled through highly complex, non-linear interactions 
between proteins, DNA, RNA, and a variety of metabolites. Any complex biological process 
is likely to involve many changes at the level of gene expression. Some of these changes will 
be of critical importance to the biological process of interest (either causal or directly 
consequential), while others may be peripheral or non-essential. The degree of ‘relevance’ of 
an observed change to the biological process under study is graded. In other words, 
biological processes are inherently “fuzzy” in terms of the importance of the vast range of 
interactions and changes that can be observed with a given biological assay (Figure 22). Any 
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type of biometric assay that attempts to pinpoint molecular changes in a complex biological 
system will be faced with the issue of applying discrete categorization on a continuum. 

Biological ‘Truth’ vs. Analytic Tests

Less

More

Test 1

Test 2

Test 3

Biological Truth, 
shaded by Interest

 
Figure 22. The set of true molecular changes associated with a complex 

biological process is shown as a “fuzzy” mass, whose members are 
graded in terms of their relevance or “interest” to the biological 
process.  Various analytic tests (represented by the dotted ovals) 
estimate the truth, with some degree of error. 

Therefore, biologically relevant gene expression changes may or may not be effectively 
captured with a given statistical test. The list of genes found to be significantly changing by a 
t-test, for example, may contain the majority of actual biological changes, but as previously 
explained, it will also suffer from some false positives and false negatives. Furthermore, a 
subset of the ‘true’ changes captured by the t-test may be biological noise or real biological 
changes that are not relevant to the process under investigation. One strategy to handle this 
inherent uncertainty when interpreting expression profiling data is to overlay functional 
information onto the statistical results, allowing biological context to help decide what is of 
interest and what is not. 
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Chapter 8  Annotation Mining Tools  
While investigating the function of genes is often the most interesting and relevant part of 
analysis, it has also become one of the most challenging, given the amount and complexity 
of information. Once a list of genes exhibiting statistically significant expression patterns is 
generated, there is no clear method delineating how to move forward with data 
interpretation. For instance, while there are many databases with functional gene 
information, such as LocusLink, HomoloGene, RefSeq and UniGene databases, the answer 
to a simple question such as “What function does this gene perform?” may be in all of them, 
some of them, or none of them.  

Affymetrix® NetAffx™ Analysis Center 
The Affymetrix® NetAffx™ Analysis Center (www.affymetrix.com/analysis/) was developed to 
help researchers avoid this serious data bottleneck and to reach biologically meaningful 
results more quickly. One of the primary functions of the Analysis Center is to address the 
need described in the preceding section: providing comprehensive functional annotations 
that can be overlaid onto statistical results, enabling the creation of a list of both statistically 
and biologically significant genes. This online resource provides access to integrated 
biological annotations from a broad range of both public and Affymetrix-specific databases 
through one streamlined interface. 

The Affymetrix Analysis Center serves as a convenient central resource for qualitative 
information in the Experiment Cycle (Figure 23). Rather than searching from database to 
database and entering information numerous times, the Analysis Center provides a single 
interface through which scientists can search multiple databases simultaneously. 
Explanations of the contents of each of the databases are provided to help determine which 
are most appropriate for a given search. Searches can be as broad or specific as necessary, 
depending on researchers’ scientific goals.  

Experimental Planning 
The Analysis Center can be used in the experimental planning phase of the experiment cycle 
(see Figure 23). Researchers can initiate a query in the Analysis Center based on probe set 
IDs, sequence, genes, organisms, tissue, and a number of other criteria. Additionally, any or 
all such criteria can be searched in combination. For instance, it is possible to find enzymes 
expressed in Rat liver that are found on the Rat Expression Set 230 by performing a 
Standard Query that is illustrated in Figure 24.  

Adding to this initial query, it also possible to then search for human orthologs as illustrated 
in Figure 25.  This is done by clicking on “Show Orthologs” at the top of the results sections 
(Figure 26). 
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Figure 23. The Experimental Cycle. This diagram shows a schematic of the 

experimental cycle and aspects of the Analysis Center to use at each 
step. 

 
Figure 24. A Standard Query to obtain all enzymes in liver represented on the Rat 

Expression Set 230.  
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Figure 25. Results of an ortholog search using the HG-U133 Plus 2.0 Array. 

 
Figure 26. Zoomed-in view of the Show Orthologs link. 

Additionally a list of genes or gene names can be queried using the Batch Analysis tool. 
Before using the Batch Query, it is imperative to format the descriptors to be included in the 
query. For example, a list of gene accession numbers or names should be supplied in a 
column of an EXCEL spreadsheet.  The spreadsheet should be saved in a Text (Tab 
delimited) format as shown in Figure 27. Then, the list can be uploaded when conducting 
the Batch Query. 

 



DATA ANALYSIS FUNDAMENTALS 

Page 79 

1001_at  

1002_at 

1003_at 

1004_at 

1005_at 

1006_at 

1007_at 

1008_at 

1009_at 

1010_at 

1011_s_at 

Figure 27. A list of probe sets saved in Text (Tab delimited format) for Batch 
Query. Note that no other aspect of the data are present. 

Results from a query can be customized using a predefined view. A view is created by the 
following steps (see Figure 28): 

1. Click on the “Annotation Views” link. 
2. Choose the fields of interest in the “Selected Fields” window. 
3. Provide a name for the view. 
4. Save the view. 

The new view can be used to visualize any queries, past or present. 
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Figure 28. Annotation View Expression page used to construct a customized 

view. 

Results from any query are easily downloaded by using the Export command (see Figure 29).  
The results are saved as a .tsv file which can be opened in EXCEL. It is important to note 
that results that are downloaded from a query or GO Mining Tool are limited to a 3000 
probe set maximum.  
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Figure 29. Example of the Export window. 

Biological Interpretation 
Biological interpretation of results is typically executed once a final gene list is determined 
from the initial first order analysis.  Specific probe sets or groups of probe sets can be 
searched using Quick Query or Batch Query, respectively. 

To search for individual probe sets, enter the entire probe set ID, complete with suffix (e.g., 
1001_at), in a Quick query.  If 1001 is entered, the results may contain any probe set 
possessing the moniker 1001 in any of its accompanying accession numbers.  

Interrogation of multiple probe sets is done through the Analysis Center Batch Query Tool 
as discussed above.  A list of probe set IDs alone should be supplied in a column of an 
EXCEL spreadsheet.  The spreadsheet should be saved in a Text (Tab delimited) format as 
described in the previous section. The list can then be uploaded into Batch Query. 

The Gene Ontology (GO) Mining Tool can also be used to effectively illustrate results from 
a query. After obtaining results that are 3000 probe sets or less from a Quick, Standard, or 
Batch Query, the GO Mining Tool option is made available above the table of results. 
Employing the GO Mining Tool option will illustrate the data as a multi-branched graph. 
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The branches of the graph connect similar GO functions.  Figure 30 shows a GO Mining 
Tool graph.  

 
 

Figure 30. Query results further illustrated using the Gene Ontology Mining Tool. 
Members of a tree node as well as trees originating at a given node can 
be obtained using this graphical aid also. 

Queries are saved, combined, or deleted using the Query History part of the Analysis Center. 
Once a query is performed it is saved automatically and the five most recent queries are 
bookmarked on the initial Getting Started page.  

Detailed Data Analysis and Secondary Validation 
The Analysis Center is also useful for detailed data analysis of GeneChip microarray data 
results. By doing detailed data analysis it is possible to design a more refined, suitable filter 
for a specific data set. For example, data can be filtered in GCOS using arbitrary criteria such 
as a Signal Log Ratio of 1.0 or greater.  Those results can be uploaded into the Analysis 
Center using Batch Query.  The query, for example, may return information that highlights a 
functional group, such as nucleotide metabolism. Upon further investigation, it may be 
noted that most of the genes associated with nucleotide metabolism are upregulated. This 
may lead to subsequent questions about other genes involved in nucleotide metabolism that 
were not present on the original list. A Quick, Standard, or Batch Query can be used to 
determine which probe sets represent other nucleotide metabolism genes and, consequently, 
determine whether those genes were also up regulated, albeit slightly less than a Signal Log 
Ratio of 1.0. Based on this detailed data analysis it may be necessary to relax the stringency 
of the quantitative analysis and then reevaluate results. 
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The Analysis Center also serves as a valuable resource when planning further experiments to 
verify array results.  Technologies such as quantitative PCR are often used for this purpose.  
If quantitative PCR is used, then it is recommended to select the primers in the same 
sequence region that was used for the probe array design.  Designing the probe based on the 
Target Sequence provided assures that the same transcript variant is assayed in both 
technologies.  The target sequence can be obtained from the Full Record of a given probe 
set as shown below in Figure 31: 

 

 
Figure 31. Target and probe sequences of probe set 1371440_at as depicted at the 

bottom of the Full record. The Full record of a probe set is obtained by 
choosing the Details option for a probe set.  

Pathway Analysis and Modeling 
For most biologists using expression analysis in functional genomics studies, the desired 
analysis end point is a new or an improved pathway model of the biological process of 
interest. Pathway pictures are a useful and powerful way to summarize the network of 
molecular interactions that make up the biological process under study. Placing global gene 
expression data within the context of a pathway image enables you to identify affected 
pathways. 

One highly useful tool for biological pathway analysis of expression data, GenMAPP, was 
developed by the Conklin Laboratory at UCSF (http://www.genmapp.org). GenMAPP, which 
is a freeware program, and its associated files, can be downloaded from the web site. 
GenMAPP allows the application of quantitative data, such as, but not limited to, expression 
signals, as colors to pathway elements on a pathway map. In most cases, the pathway images 
must be developed based on prior knowledge (GenMAPP has basic drawing functions). 
Gene Ontology groups and data from KEGG have been used to generate MAPP files for 
human and mouse, but a considerable amount of manual work may be required to develop 
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an image of a specific pathway of interest. The premise behind its development is to provide 
a tool that helps expand and refine pathway knowledge through mapping of gene expression 
data. As more scientists use it and publish better MAPP files, it becomes more useful and 
powerful as an analysis tool. Figure 32 shows an example of pathway images with gene 
expression data overlaid as colors (cell cycle controls in maturing neutrophils). Red indicates 
an increase while blue indicates a decrease; the median Signal Log Ratio (base 2) is shown to 
the right of each box. Note the step-wise change between day 4 and day 6, including 
downstream genes from p53 and CDK 4, 6. 

In addition to GenMAPP, some sophisticated commercial products are emerging, such as 
Visual Cell from Gene Network Sciences (www.gnsbiotech.com), which provides an 
environment for creating large and highly complex graphic representations of cellular and 
molecular processes, and the integration of a variety of biological data, including RNA 
expression. 

 

 
 

Figure 32. RNA Levels of Cell Cycle Genes Visualized with GenMAPP (maturing 
neutrophils). 
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Figure 33. Cell Cycle Control in G1/S Phase.  Example of output from 

GenMAPP: two images of the G1/S phase transition cell cycle control 
pathway in maturing neutrophils at 4 days, then 6 days after treatment 
with retinoic acid. Note the small down regulation in p53 and CDK 4, 
6 at 4 days, followed by greater change at 6 days, as well as 
downstream down regulation of Bax and E2F. 

Analysis of Promoter Sequences of Regulated Transcripts 
Another area of follow-up is to analyze promoter sequences of regulated transcripts to 
identify elements that may be involved in transcriptional regulation. There are two primary 
directions that can be taken. The first involves looking for previously characterized elements 
in the promoters of transcripts that appear to be regulated by a known transcription factor. 
For example, Figure 33 shows a series of transcripts that appear to show an immediate-early 
response profile to stimulation with retinoic acid (through a nuclear receptor) in developing 
mouse neutrophils. The promoters of these transcripts may contain a Retinoic Acid 
Response Element (RARE). Indeed the gene MAD is known to contain a RARE in its 
promoter and shows a typical immediate-early response to the signal. Known sequence 
motifs can be located in promoter sequences using a variety of sequence search and 
alignment tools, such as those provided by the NCBI. Promoter sequences for many well-
characterized genes are available in public databases, such as GenBank and RefSeq, and their 
annotations continue to improve with time. In addition, the growing Eukaryotic Promoter 
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Database (EPD) is a dedicated, though currently limited, resource on promoter information 
of eukaryotes (http://www.epd.isb-sib.ch). 
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Figure 34. Transcripts Showing ‘Immediate–Early’ Change in Response to 

Retinoic Acid 

Transcripts showing ‘Immediate Early’ change in response to retinoic acid (positive Median 
Signal Log Ratios indicate an increase relative to control; negative indicate a decrease. Signal 
Log Ratio is base 2). MAD, produced by a gene known to have a Retinoic Acid Response 
Element (RARE) in its promoter, serves as a positive control. The remaining 10 transcripts 
may have such elements, a hypothesis that can be tested by searching the promoters of these 
transcripts. 

The second direction of follow-up on promoter sequences is searching for novel motifs in 
the promoters of transcripts that appear to be co-regulated (13). This may be a more 
challenging task, especially if the putative transcription factor is unknown. This direction of 
research will continue to expand as more is understood about transcription factors and their 
binding sites on gene promoters. In addition to the EPD, a useful resource is TRANSFAC: 
the Transcription Factor Database (http://transfac.gbf.de/TRANSFAC/). 
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Appendix A:  Glossary 
 

 MAS 4.0-Specific Terms (Empirical Algorithms) 

 

 MAS 5.0-Specific Terms (Statistical Algorithms) 

 

 Absolute Analysis: The qualitative analysis of a single array to determine if a 
transcript is Present, Absent, or Marginal. 

 

 Array: A collection of probes on glass encased in a plastic cartridge. 

 

 Average Difference: A quantitative relative indicator of the level of expression of a 
transcript (∑(PM-MM)/pairs in the average). 

 

 Background: A measurement of signal intensity caused by auto-fluorescence of array 
surface and non-specific binding of target/stain molecules (SAPE). 

 

 Baseline Array: An array used for normalization purposes during comparison 
analysis. Also see Comparison Analysis.  

 

 Biweight Estimate: An estimate of the central value of a sample used by the 
Affymetrix® Statistical Algorithms. 

 

 Change: A qualitative call indicating an Increase (I), Marginal Increase (MI), No 
Change (NC), Marginal Decrease (MD), or Decrease (D) in transcript level between 
a baseline array and an experiment array. 

 

 Change p-value: A p-value indicating the significance of the Change call. The change 
p-value measures the probability that the expression levels of a given probe set differ 
in two different arrays when the p-value is close to 0.5, they are likely to be the same. 
When the p-value is close to 0, the expression level in the experiment array is higher 
than that of the baseline array. When the p-value is close to 1, the expression level in 
the experiment arrays is lower than that of the baseline. 

 

 Chip: See Array. 
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 Comparison Analysis: The analysis of an experimental array compared to a baseline 
array. 

 

 Decision Matrix: An algorithm that examines a collection of metrics used to 
determine the status of a hybridized transcript. 

 

 Detection: A qualitative measurement indicating if a given transcript is detected 
(Present), not detected (Absent), or marginally detected (Marginal). 

 

 Detection p-value: A p-value indicating the significance of the Detection call. A 
Detection p-value measures the probability that the discrimination scores of all probe 
pairs in the probe set are above a certain level (Tau), and that the target is likely to be 
Present. 

 

 Discrimination Score [R]: The relative difference between a Perfect Match and its 
Mismatch (R=(PM-MM)/(PM+MM)). 

 

 Empirical Algorithms: The algorithms utilized by GeneChip® Analysis Suite and 
Microarray Suite 4.0 based on empirical data generated by Affymetrix. 

 

 Experimental Array: An array that is used in comparison analysis to be compared 
against a baseline array to detect changes in expression. 

 

 Feature: A single square-shaped probe cell on an array (another term for probe cell). 
A feature ranges in size from 8 to 50 microns depending on the array type. 

 

 Hybridization Controls: Controls added to the sample before hybridization to the 
array (refer to Chapter 1 for more information). 

 

 Idealized Mismatch: A value used in place of the Mismatch intensity when Rules 2 
and 3 are used in the Signal Algorithm (refer to Chapter 2 for more information on 
Rules in the Statistical Algorithms). 

 

 Latin Square: An experimental design used to monitor the ability to detect a 
transcript accurately over a range of concentrations. It also allows the statistical 
analysis of patterns and variability in repeated measurements in a systematic fashion. 
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 Mask: Filter used during synthesis of a GeneChip® array that exposes discreet areas 
of a wafer to ultraviolet light. 

 

 Metric: The calculated answer of mathematical equations used by the GeneChip® 
algorithms. 

 

 Mismatch Probe (MM): A 25-mer oligonucleotide designed to be complementary to 
a reference sequence except for a single, homomeric (nucleotide mismatch that 
contains the complementary base to the original) base change at the 13th position. 
Mismatch probes serve as specificity controls when compared to their corresponding 
Perfect Match probes. 

 

 Noise: The result of small variations in digitized signals in the scanner as it samples 
the probe array surface and is measured by examining the pixel-to-pixel variations in 
signal intensities. 

 

 Non-parametric Test: A statistical test without the assumption of a particular 
distribution of the data, also known as a distribution-free test. 

 

 Normalization: Adjusting an average value of an experimental array equal to that of 
the baseline array so that the arrays can be compared (refer to Algorithms 
description for more information). 

 

 p-value: The probability that a certain statistic is equal or more extreme to the 
observed value when the null hypothesis is true. The null hypothesis is that the two 
samples are the same. 

 

 Parametric Test: A statistical test that assumes the data are sampled from a 
population following a Gaussian or normal distribution. 

 

 Perfect Match Probe (PM): A 25-mer oligonucleotide designed to be complementary 
to a reference sequence. The probe sequence that is complementary to the sequence 
to be hybridized. 

 

 Perturbation: The range by which the normalization factor is adjusted up or down by 
the user. 
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 Photolithography: The process used to manufacture probe arrays in conjunction with 
combinatorial chemistry through a series of cycles. Using light, photolabile 
protecting groups are removed from linkers bound to the glass substrate (wafer) to 
enable nucleoside phosphoramidite addition in specific deprotected locations. Each 
light exposure and subsequent phosphoramidite addition is equal to one cycle. 
Typically, probe arrays are synthesized in about 80 cycles. 

 

 Probe: A 25-mer oligonucleotide synthesized in situ on the surface of the array using 
photolithography and combinatorial chemistry. Hybridization to probes provides 
intensity data used in both Empirical and Statistical algorithms. 

 

 Probe Array Tiling: The spatial organization of probe array features into probe pairs 
and sets. 

 

 Probe Cell: A single square-shaped feature on an array containing probes with a 
unique sequence. A probe cell ranges in size from 18 to 50 microns per side 
depending on the array type (refer to Figure 35). 

 

 Probe Pair: Two features within a probe set (refer to Figure 35). Each probe of a 
probe pair is designed to differ only at the nucleotide base interrogation position. 
The probe pair is designed to detect a Perfect Match (PM) and a Mismatch (MM). 

 

 Probe Set: A collection of probe pairs which interrogates the same sequence, or set 
of sequences. A probe set typically contains between 11 to 20 probe pairs (refer to 
Figure 35). 

 

 SAPE: Streptavidin-phycoerythin dye used to bind the biotin. In the GeneChip® 
Expression Assay, the biotinylated nucleotides are incorporated into the cRNA 
during the in vitro transcription (IVT) reaction. 

 

 Scaling: Adjusting the average intensity or signal value of every array to a common 
value (target intensity) in order to make the arrays comparable. 

 

 Signal: A quantitative measure of the relative abundance of a transcript. 

 

 Signal Log Ratio: The change in expression level for a transcript between a baseline 
and an experiment array. This change is expressed as the log2 ratio. A Signal Log 
Ratio of 1 is the same as a Fold Change of 2. 
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 Signal Log Ratio High: The upper limit of the Signal Log Ratio within a 95% 
confidence interval. 

 

 Signal Log Ratio Low: The lower limit of the Signal Log Ratio within a 95% 
confidence interval. 

 

 Single Array Analysis: See Absolute Analysis. 

 

 Spike Controls: Controls that are added to the sample before cDNA synthesis (refer 
to Chapter 1 for more information). 

 

 Stat Pairs: The number of probe pairs in the probe set. 

 

 Stat Common Pairs: The number of common probe pairs on two arrays (experiment 
versus baseline) after saturation across the probe set is determined. 

 

 Stat Pairs Used: The number of probe pairs in the probe set used in the Detection 
call. 

 

 Statistical Algorithms: The algorithms contained in Microarray Suite Version 5.X and 
GCOS 1.X. This algorithm was developed using standard statistical methods. 

 

 Tau: A user-definable threshold used to determine the detection call. 

 

 Target: The sample applied as labeled (biotinylated), fragmented cRNA to a 
GeneChip® probe array for hybridization. 

 

 Wafer: The glass substrate onto which probes are synthesized during the 
manufacturing of probe arrays. 

 

 Wilcoxon’s Signed Rank Test: A non-parametric pair-wise comparison test. This test 
is used to determine the Detection and Change calls for analysis. 
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Figure 35. Image of a probe set, which includes 10 probe pairs. 
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Appendix B:  GeneChip® Probe Array Probe Set Name 
Designations 
In addition to the _at (“antisense target”) and _st (“sense target”) probe set name 
designations, there are other designations that reflect special characteristics of a particular 
probe set based on probe design and selection criteria. These designations are listed below. 

Probe Set Name Designations Prior to HG-U133 Set: 
_f_at (sequence family): 

Probe set that corresponds to sequences for which it was not possible to pick a full set of 
16-20 unique and/or shared similarity-constrained probes. Some probes in this set are 
similar (e.g., polymorphic) but not necessarily identical to other gene sequences. Some family 
members overlap a portion of the probe set. Family members can be singleton or an 
Affymetrix designated group of sequences. 

                            --- --- --- --- ---    12345_f_at probes 

                      --------------------------------------   transcript #1 

                              --------------    transcript #2 

                          -------------     transcript #3 

                                           -X------X------   transcript #4 (w/polymorphisms) 

 

_s_at (similarity constraint): 

Probe set that corresponds to a small number of unique genes (<5%) that share identical 
sequence. Probes were chosen from the region that is common to these genes. Group 
members can be singleton or a group of sequences. For _s probe sets, there is not enough 
unique sequence to design a separate _at probe set. 

                             --- --- --- ---    23456_s_at probes 

                             -----------------------    transcript #5 

                       ------------------------------   transcript #6 

                             --------------------   transcript #7 

 

_g_at (common groups): 

Probes chosen in region of overlap. To differentiate from an _s group, the sequences are 
represented as singletons (_at probe sets either have the same probe set ID number or the 
preceding probe set ID number) on the same probe array as well. In other words, for _g 
probe sets, there is enough unique sequence to design a separate _at probe set. 

                                              --- --- ---   34567_at probes 

       -------------------------------------------   transcript #8 
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                         --- --- --- ---     34568_g_at probes 

---------------------------------------    transcript #9 

 

_r_at (rules dropped): 

Designates sequences for which it was not possible to pick a full set of unique probes using 
Affymetrix’ probe selection rules. Probes were picked after dropping some of the selection 
rules. 

 

_i_at (incomplete): 

Designates sequences for which there are fewer than the required numbers of unique probes 
specified in the design. 

 

_b_at (ambiguous probe set): 

All probe selection rules were ignored. Withdrawn from GenBank. 

 

_l_at (long probe set): 

Sequence represented by more than 20 probe pairs. 

Probe Set Name Designations for HG-U133 Set and HG-U133A 
2.0  
These are the only probe set extensions used in these designs 

_s_at: 

Designates probe sets that share all probes identically with two or more sequences. The _s 
probe sets can represent shorter forms of alternatively polyadenylated transcripts, common 
regions in the 3’ ends of multiple alternative splice forms, or highly similar transcripts. 
Approximately 90% of the _s probe sets represent splice variants. Some transcripts will also 
be represented by unique _at probe sets. 

 

_x_at: 

Designates probe sets where it was not possible to select either a unique probe set or a probe 
set with identical probes among multiple transcripts.   Rules for cross-hybridization were 
dropped in order to design the _x probe sets.   These probe sets share some probes 
identically with two or more sequences and therefore, these probe sets may cross-hybridize 
in an unpredictable manner. 

Probe Set Name Designations for HG-U133 Plus 2.0 
These are the only probe set extensions used in the HG-U133 Plus 2.0 Array 
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Original content 
_s_at: 

Designates probe sets that share all probes identically with two or more sequences. The _s 
probe sets can represent shorter forms of alternatively polyadenylated transcripts, common 
regions in the 3’ ends of multiple alternative splice forms, or highly similar transcripts. 
Approximately 90% of the _s probe sets represent splice variants. Some transcripts will also 
be represented by unique _at probe sets. 

 

_x_at: 

Designates probe sets where it was not possible to select either a unique probe set or a probe 
set with identical probes among multiple transcripts. Rules for cross-hybridization were 
dropped in order to design the _x probe sets. These probe sets share some probes identically 
with two or more sequences and therefore, these probe sets may cross-hybridize in an 
unpredictable manner. 

 

“Plus” content 
_a_at: 

Designates probe sets that recognize alternative transcripts from the same gene (a subset of 
the _s probe sets as described under HG-U133 Set). 

 

_s_at: 

Designates probe sets with common probes among multiple transcripts from different 
genes. 

 

_x_at: 

Designates probe sets where it was not possible to select either a unique probe set or a probe 
set with identical probes among multiple transcripts.   Rules for cross-hybridization were 
dropped in order to design the _x probe sets.   These probe sets share some probes 
identically with two or more sequences and, therefore, these probe sets may cross-hybridize 
in an unpredictable manner. 

 

At the time of the HG-U133 Set design the "_a" probe set was not defined. The non-unique 
probe set type, "_a", was introduced with the Mouse Expression Set 430 to indicate probe 
sets that recognize alternative transcripts from the same gene. Probe sets with common 
probes among multiple transcripts from separate genes are annotated with the "_s" suffix. 
For consistency, the names of existing probe sets with the "_s" suffix were not changed 
between the HG-U133 Set and the HG-U133 Plus 2.0 and HG-U133A 2.0 Arrays. The new 
(Plus) content on the HG-U133 Plus 2.0 Array incorporates both the "_a" and "_s" probe 
sets. 
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Probe Set Name Designations for Mouse Set 430, Mouse 430 2.0 
Arrays, Rat Set 230, and Rat 230 2.0 Array  
These are the only probe set extensions used in these designs 

_a_at: 

Designates probe sets that recognize alternative transcripts from the same gene. 

 

_s_at: 

Designates probe sets with common probes among multiple transcripts from different 
genes. 

 

_x_at: 

Designates probe sets where it was not possible to select either a unique probe set or a probe 
set with identical probes among multiple transcripts.   Rules for cross-hybridization were 
dropped in order to design the _x probe sets.   These probe sets share some probes 
identically with two or more sequences and, therefore, these probe sets may cross-hybridize 
in an unpredictable manner. 
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Appendix C:  Expression Default Settings 

GCOS 1.0 Expression Analysis Default Settings 
 

16-20 probe 
pairs/probe set 

11-15 probe pairs/probe set Default Parameter 

 18µm feature size 11µm feature size 

Alpha1 0.04 0.05 0.05 

Alpha2 0.06 0.065 0.065 

Tau 0.015 0.015 0.015 

Gamma1L 0.0025 0.0045 0.002 

Gamma1H 0.0025 0.0045 0.002 

Gamma2L 0.003 0.006 0.002667 

Gamma2H 0.003 0.006 0.002667 

Perturbation 1.1 1.1 1.1 

 

MAS 5.0 Expression Analysis Default Settings 
 

# probe pairs/probe set Default Parameter 

16-20 11-15 

Alpha1 0.04 0.05 

Alpha2 0.06 0.065 

Tau 0.015 0.015 

Gamma1L 0.0025 0.0045 

Gamma1H 0.0025 0.0045 

Gamma2L 0.003 0.006 

Gamma2H 0.003 0.006 

Perturbation 1.1 1.1 
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Appendix D:  Change Calculation Worksheet 
This procedure can be used to identify robust changes between two GeneChip® probe 
arrays. These instructions relate to analyses performed in GeneChip® Operating Software.  

If the samples hybridized to the two arrays are derived from separate samples, this procedure 
will identify probe sets showing significant change and serves as a useful starting point for 
further data analysis. If the two samples are derived from the same hybridization cocktail, 
this procedure will identify false changes. According to the Affymetrix specification, the false 
change observed should be no more than 2%. This value is based on observations reported 
by Wodicka et al. in 1997 (15). 

Data Preparation 
1. Choose the two data sets that you wish to analyze. 

2. Conduct a single array analysis of the baseline data set as described in Chapter 3 of 
this manual. 

3. Conduct a comparison analysis of the experiment data set using the previous data set 
as the baseline as described in Chapter 4 of this manual. Ensure that the scaling 
strategy used in step 2 is also used in step 3. 

4. Record the file names of the baseline and experiment in the appropriate spaces on 
the Change Calculation Worksheet (see page 101). 

Calculate Increases 
The first step of this procedure is to calculate the number of significant increases. 

1 Calculate the number of probe sets that have a Detection call of ‘P’ in the Experiment 
file.  

1.1 Open the comparison .chp file in GCOS, with the Pivot table view. 

1.2 Display additional Pivot table columns in the analysis by selecting “Pivot 
Data>Absolute Results” from the “View” pull-down menu. Ensure that the 
Detection, Change and Signal Log Ratio Columns are displayed. 

1.3 Sort the data on the Detection column in descending order by right-clicking on 
the Detection column heading and selecting “Sort Descending” from the pop-up 
menu as shown in Figure 36. 

1.4 Click on the probe set identifier, contained in the far-left column, at the top of 
the list. 

1.5 Use the mouse to scroll down the data list until the last ‘P’ is visible. 

1.6 Hold down the ‘Shift’ key and click on the probe set identifier corresponding to 
the last ‘P’ value. 

1.7 Click the “Hide unselected probe sets” button as shown in Figure 37. 
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1.8 The number of remaining probe sets is displayed in the bottom-right of the 
window, as shown in Figure 38. Enter this value into the box on Line 1 of the 
Change Calculation Worksheet. 

 
Figure 36.  

 
Figure 37.  
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Figure 38.  

 

 

2 Calculate the number of probe sets from above list that also have a Change call of ‘I.’ 

2.1 After performing step 1 of the Increase calculation, sort the data on the Change 
column in ascending order, by right-clicking the Change column heading and 
selecting “Sort Ascending” from the pop-up menu as shown in Figure 36. 

2.2 Scroll down the list of probe sets until the first ‘I’ call is visible, then click on this 
probe set identifier. 

2.3 Scroll down the list until the last ‘I’ call is visible, hold down the ‘Shift’ key and 
click on the corresponding probe set identifier. 

2.4 Click the “Hide unselected probe sets” button as shown in Figure 37. 

2.5 The number of remaining probe sets is displayed in the bottom-right of the 
window as shown in Figure 38. Enter this value into the box on Line 2 of the 
Change Calculation Worksheet. 

3 Calculate the number of probe sets from the above list that also have a Signal Log Ratio 
of 1.0 or greater. 

3.1 After performing step 2 of the Increase calculation, sort the data on the Signal 
Log Ratio column in descending order by right-clicking the Signal Log Ratio 
column heading and selecting “Sort Descending” from the pop-up menu as 
shown in Figure 36. 

3.2 Click on the probe set identifier at the top of the list. 

3.3 Scroll down the list until the last Signal Log Ratio value (equal to 1.0) is visible, 
hold down the ‘Shift’ key and click on the corresponding probe set identifier. 

3.4 Click the “Hide unselected probe sets” button as shown in Figure 37. 

3.5 The number of remaining probe sets is displayed in the bottom-right of the 
window as shown in Figure 38. Enter this value into the box on Line 3 of the 
Change Calculation Worksheet. 
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4 Calculate the number of probe sets that have increased as a percentage of the probe sets 
detected. 

4.1 Divide the number of probe sets showing significant increase (Line 3) by the 
number of probe sets detected (Line 1). 

4.2 Multiply the above number by 100 to convert to a percentage. 

4.3 Enter the value in the box on Line 4 of the Change Calculation Worksheet. 

Calculate Decreases 
The next part of this procedure is to calculate the number of significant decreases. 

1 Calculate the number of probe sets that have a Detection call of ‘P’ in the Baseline file. 

1.1 Open both the comparison .chp and baseline .chp files in GCOS in the Pivot 
table view. 

1.2 Display Pivot table columns in the analysis by selecting “Pivot Data>Absolute 
Results” from the “View” pull-down menu. Ensure that the Detection, Change, 
and Signal Log Ratio columns are displayed. 

1.3 Sort the data on the Detection column of the baseline file in descending order by 
right-clicking the Detection column heading and selecting “Sort Descending” 
from the pop-up menu as shown in Figure 36. 

1.4 Click on the probe set identifier contained in the far-left column at the top of the 
list. 

1.5 Use the mouse to scroll down the data list until the last ‘P’ is visible in the 
baseline file. 

1.6 Hold down the ‘Shift’ key and click on the probe set identifier corresponding to 
the last ‘P’ value. 

1.7 Click the “Hide unselected probe sets” button as shown in Figure 37. 

1.8 The number of remaining probe sets is displayed in the bottom-right of the 
window as shown in Figure 38. Enter this value into the box on Line 5 of the 
Change Calculation Worksheet. 

2 Calculate the number of probe sets from the above list that also have a Change call of 
‘D.’ 

2.1 After performing step 1 of the Decrease calculation, sort the data on the Change 
column of the comparison file in ascending order by right-clicking the Change 
column heading and selecting “Sort Ascending” from the pop-up menu as 
shown in Figure 36. 

2.2 Click on the probe set identifier contained in the far-left column at the top of the 
list. 

2.3 Scroll down the list until the last ‘D’ call is visible, hold down the ‘Shift’ key and 
click on the corresponding probe set identifier. 

2.4 Click the “Hide unselected probe sets” button as shown in Figure 37. 
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2.5 The number of remaining probe sets is displayed in the bottom-right of the 
window as shown in Figure 38. Enter this value into the box on Line 6 of the 
Change Calculation Worksheet. 

3 Calculate the number of probe sets from above list that also have a Signal Log Ratio of  
-1.0 or less. 

3.1 After performing step 2 of the Decrease calculation, sort the data on the Signal 
Log Ratio column of the comparison file in descending order by right-clicking 
the Signal Log Ratio column heading and selecting “Sort Descending” from the 
pop-up menu as shown in Figure 36. (Note that GCOS sorts the Signal Log 
Ratio column on the magnitude of the Signal Log Ratio, hence, the sign of the 
value is ignored.) 

3.2 Click on the probe set identifier at the top of the list. 

3.3 Scroll down the list until the last Signal Log Ratio value equal to -1.0 is visible, 
hold down the ‘Shift’ key, and click on the corresponding probe set identifier. 

3.4 Click the “Hide Unselected probe sets” button as shown in Figure 37. 

3.5 The number of remaining probe sets is displayed in the bottom-right of the 
window as shown in Figure 38. Enter this value into the box on Line 7 of the 
Change Calculation Worksheet. 

4 Calculate the number of probe sets that have decreased, as a percentage of the probe sets 
detected. 

4.1 Divide the number of probe sets showing significant decrease (Line 7) by the 
number of probe sets detected (Line 5). 

4.2 Multiply the above number by 100 to convert to a percentage. 

4.3 Enter the value into the box on Line 8 of the Change Calculation Worksheet. 

Calculate Total Percentage Change 
Finally, add the Percentage Increase (Line 4) to the Percentage Decrease (Line 8) and place 
the sum into the box on Line 9 of the Change Calculation Worksheet. 

If the two samples being compared are from the same hybridization cocktail, the value in 
Line 9 should be less than 2.0. If this is not the case, it is likely that the arrays were not 
analyzed using the same scaling strategy. The data should be re-analyzed paying particular 
attention to ensure that the scaling strategy is identical for all analyses performed before 
contacting your Affymetrix Field Applications Specialist for further consultation. 
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Appendix E:  Change Calculation Worksheet for 
GeneChip® Operating Software 
 

 

Experiment File name: ______________________________________________ 

 

 

Baseline File name: ________________________________________________ 

 

 

Increases 
 

Number of probe sets with Detection of ‘P’ in Experiment:     Line 1 

 

Number of probe sets from Line 1 that have a Change call of ‘I’ :     Line 2 

 

Number of probe sets from Line 2 that have a Signal Log Ratio of >1:    Line 3 

 

% Increase (Line 3 divided by Line 1)*100:       Line 4 

 

 

Decreases 
 

Number of probe sets with Detection of ‘P’ in Baseline:      Line 5 

 

Number of probe sets from Line 5 that have a Change call of ‘D’ :    Line 6 

 

Number of probe sets from Line 6 that have a Signal Log Ratio of <-1:    Line 7 

 

% Decrease (Line 7 divided by Line 5) x 100:       Line 8 

 

 

Total Changes 
 

Total % Change (Line 4 + Line 8):                 % Line 9 
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Appendix F: Statistical Analysis Flow 
The Statistical Analysis Flow questions and diagram (see Figure 39) provides important 
considerations before starting a statistical analysis of gene expression data.   

1. Are my observations approximately normally distributed? If yes, then use a 
parametric test. If not, use a non-parametric test. 

2. If using a parametric test, are variances between groups approximately equal? If yes, 
proceed. If not, apply weighting techniques. 

3. How many groups will I be examining? If two, go to step 4. If more than two, use an 
ANOVA or Kruskal-Wallis test, which can be utilized to examine overall group 
variability. 

4. If my number of groups equals two, are the observations paired or unpaired? If they 
are paired, use a paired Student’s t-test or Wilcoxon Signed-Rank test. If they are 
unpaired, then use an unpaired Student’s t-test or a Mann-Whitney. 

5. What if I have used an ANOVA and I want to examine which groups are different? 
In this case, you would want to use a multiple comparisons test. It will be necessary 
to correct for Type I error by either using a Bonferroni correction, or some other 
type of correction. 

6. Retrieve all relevant annotation information from the NetAffx Analysis Center. 

7. Do all significant genes require follow up? If yes, go to step 8. If no, filter using 
functional information and return to step 6. Researchers must “draw the line” with 
regard to the list of “interesting” genes by integrating other types of biological data 
with the statistical analysis. 

8. Are all significant genes well annotated? If no, identify further experiments and 
research. If yes, integrate other data types (cell biology, biochemistry, proteomics, 
histology, etc.). 

9. Are high-level biological patterns and gene groups present? If no, identify further 
experiments and research. If yes, prepare research findings for publication and then 
identify further experiments and research. 
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Statistical Analysis Flow Diagram 
 

 
Figure 39. The statistical analysis flow diagram is one representation of many 

possibilities. 
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Use a multiple
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Notes : 
1   In the special case where there are only 2 
groups, the Kruskal-Wallis is equivalent to the 
Mann-Whitney 
2  In the special case where there are only 2 
groups, ANOVA is equivalent to the t-test 
3  Application of weighting techniques is an 
advanced topic requiring a specialist. The 
exception is for t-tests where an unequal 
variance method is commonly available. A 
discussion of weighting techniques is beyond 
the scope of this document. 
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